har jag fixat några bilder
från en av mina “Biblar” inom faktasamlingar om flygkultur.
Boken heter: “Handbok i flygning” och är utgiven 1958.
Här finns massor av nyttigt och intressant att läsa för den
flygintresserade. Inte minst får man bra förklaringar på
flygmekaniska och aerodynamiska egenskaper på ett
flygplan. De är bra för de är korrekta. Inte trots de är
60 år gammal fakta, utan tror jag, tack vare, det är 60
år gammal fakta!!
Här följer en bunta bilder som beskriver olika
företeelser på ett plan:
Ovan är ett venturi-rör. Det sitter monterat på utsidan av planet.
Luften strömmar in från vänster – komprimeras av förträngningen
-fortsätter i expansionskammaren- sen ut.
Det som händer är att hastigheten på luften ökar kraftigt,
vilket enligt Bernouilles Lag medför att trycket sjunker i
motsvarande grad. Således får man ett undertryck efter
förträngeningen. Detta undertryck kan man till exempel
utnyttja för att driva vissa flygplansinstrument, som till
exempel spade/kula.
Ett pitot-rör används för att mäta hastigheten på den
förbiströmmande luften. Man mäter det dynamiska
(fartvinden) trycket och jämför det med det statiska
trycket (lufttrycket där planet befinner sig vid mättillfället)
Resultatet blir farten genom luften. Som ni ser har
man värme i röret, så det inte ska isa igen och där
finns också dräneringshål så smältvatten och regnvatten
kan rinna ut. Fryser pitotröret eller om det finns
främmande föremål i det, kan det orsaka haverier
eftersom det är en av de viktigaste sensorerna för
flyginstrumenten.
Vingen ovan är torderad, som det heter på fint språk.
indre anfallsvinkel än vingroten. Det medför, om man
flyger på vikningsgränsen, att vingspetsen löser av,
eller tappar lyftkraften, senare än vingroten, varför
planet är kontrollerbart i lägre fart, än om vingen
inte varit torderad. Förr tiden var det egenskap
som man byggde in i sin modell under bygget.
Men eftersom nästan ingen bygger sin modell i
dag har detta med vingskränkning försvunnit.
Det märks på snaprollarna och planteringarna
i marken om inte annars.
För att få ett flygplan att flyga stabilt i längdaxeln,
förser man ofta vingarna med pilform.
Skulle man få en störning åt som på bilden åt höger,
kommer vänster vinge att exponera större area mot
den mötande fartvinden än den högra. Det skapar
mer motstånd och planet återföres till den gamla
kursen, om allt fungerar perfekt. I verkligheten får
man använda både skev- och sidoroder.
Men som sagt, det är ett hjälpmedel.
Ovan tre kulor som illustrerar begreppet Stabilitet.
Den till vänster är i stabil jämvikt, för även om
den utsätts för en störning, kommer den att återgå
till utgångsläget.
Det mittersta klotet befinner sig i instabil jämvikt.
Det återgår inte till utgångsläget
efter en störning.
Det tredje klotet är i indifferent jämvikt, vilket betyder
att det hamnar i samma jämviktsläge efter en störning fast på
annan plats.
Ovanstående är fundamental kunskap, när man
talar om stabilitet hos ett flygplan.
För den som aldrig sett en propeller i sektioner så visar
ovanstående bild hur det ser ut.Ju längre ut från centrum
du kommer, desto mindre anfallsvinkel. I spetsen har
man i stort sett noll i alfa. Varför har man det så
Jo man vill ha ett jämnt drag om möjligt från centrum
ut till periferin.
Så här ser det ut, när du flyger med för stor anfallsvinkel ,
eller om du flyger för sakta. Strömningen på översidan
som ska var laminär har blivit det den inte ska vara,
turbulent, vilket medför, att lyftkraften försvinner,
planet viker sig eller går i spin.
Lite luftmotståndskoefficienter vid olika kroppar.
Det kommer mera och då om motorer.