Kategorier
Hangflyg modell

MODELLHANGFLYG DEL II

Hur det började, 70-talet.

 

 

 

 

 

 

 

Efter att man lärt sig flyga med sin  Cumulus på Hovs Hallar och
upplevt känslan, när man kastade ut sin modell över den 90 meter
höga kanten ut  i ovissheten, kände jag,  att jag ville gå vidare med en bättre modell.

En bättre modell var ju den typen av modell,  som Pär och Curt
flög med. Det innebar,  en modell med vingar  som hade en Epplerprofil.

Professor Eppler var en tysk aerodynamiker,  som hade skapat
en serie av profiler,  som var ämnade i första hand för flygande vingar.
Att de var konstruerade för flygande vingar i första hand,  innebar,
att de var tryckcentrumstabila. Om en vinge är tryckcentrumsstabi
l innebär det,  att lyftkraftsvektorn ligger kvar på samma ställe i
förhållande till kordan vid olika hastigheter och anfallsvinklar.
Detta uttryckt lite enkelt.

I Epplers serie fanns ett antal profiler,  som Pär ansåg borde
passa för snabbare hangmodeller. Den överväldigande majoriteten
av hangmodeller på hangtävling 1972 var av typen ”Drakar”.
De hade en tjock Clark-Y profil, som naturligtvis generade
mycket lyftkraft, men också mycket motstånd, eftersom
lyftkraften får man inte gratis, utan den måste betalas med
ökat luftmotstånd. Således stod dessa drakar nästan bara
mot vinden och stångade.

För att komma bort från detta experimenterade Pär med olika
Epplerprofiler. Relativt tidigt fastnade han för E180-E182,
vilka var de tunnaste profilerna.  Jämfört med Clark-Y profiler
hade Eppler 182 kanske bara 40 %  av tjockleken. Alla förstår
ju att detta kraftigt skulle påverka modellens hastighet.
Ty, man ska inte skapa mer lyftkraft,  än vad som behövs,
vilket Clark-Y profilen gjorde.

Vingarna vid denna tid byggde man konventionellt med
en webbad vingbalk och D-box i nosen, spryglar som satt
tätt och som klädsel användes 0.4 mm treskiktad finsk
björkplywood.

Kropparna byggdes efter konceptet ”Förlorad form”.
Det innebar,  att man formade frigolit till en kropp,
svepte in kroppen i GladPack för att inte epoxiplasten
skulle gå in i frigoliten. Därefter  virade vi om glasfiberväv,
som penslades med epoxiplast. Vad som återstod ,
var att man  köpte plastband, som förresten användes
av folk som knöt ihop de till något slags plastmattor.

Plastbanden virades om kroppen ganska hårt från nos
till stjärt. Det gjorde,  att plastbanden  hela tiden
pressande ut överflödig epoxiplast. När bandageringen
var klar,  fick kroppen  hänga och härda i minst 24 timmar.
Då härdningen var klar,  virades plastbanden av och hade
man då tur,  fanns det en stark epoxiekropp därunder.

Problemet var ju,  att kroppen var fylld med frigolit.
Ett uttag för en huv sågades upp och in i frigoliten
hälldes aceton eller thinner, som i ett nafs smälte bort
frigoliten. Vad som återstod var att med en pinne med
slippapper slipa till kroppens insida.

Så gjorde man kroppar då.

Redan tidigt 70-tal använde vi All Flying Stab, vilket var
överlägset vid intrimning av en modell. Hade man
fått anfallsvinkeln på vingen lite fel,  kunde man kompensera
med att trimma stabben. Om vi hade haft konventionellt
höjdstyrverk med höjdroder och stabbe, då hade,  om man
var tvungen,  att väsentligt trimma höjdrodret detta och
stabben legat och ”kivat”, vilket inneburit,  att den laminära
strömmningen hade störts vid bakre delan av stabben och höjdrodret.

Vi såg många modeller,  som flög nedtrimmade för att
få framdrift,  så kroppen såg ut att stå i en nerförsbacke.

Dessa utvecklade hangmodeller hade i regel en spännvidd
av 300 cm och vingarna var pilformade med rak bakant.
Varför vingarna var pilformade i framkanten var,  för att
få modellerna stabila i girplanet.Varje avvikelse från den
tänkta flygbanan kostade ju hastighet, vilket ju var allt det
handlade om,  när man tävlade.

Som jag skrivit tidigare,  använde vi 4 servo till en modell
med skev-, höjd- och sidoroder. Servo var på 70-talet inget
som man hade lådvis, utan man flyttade runt med de servon,
som följde radion.

Detta ställde stora krav på de mekaniska lösningarna.
Till exempel skevroderna hade endast ett servo.
Detta satt i regel placerat mitt i kroppen. Servon drog en
stötstång ut till en skevroderhävarm i vingen och sen vidare
till roderhornet. Det blir 5(  fem) punkter,  där kraften ska
överföras på var sida. Alltså ett servo skulle övervinna glapp
och friktion på 10 ställen……Det gällde att vara noggrann
och vi funderade ut olika lösningar för att minska glapp
och friktion. I dag hade man ju använt två servo ute i vingarna.

Jag var nog den förste i Sverige, som körde två servon i
vingarna, vilket ju innebar ett stor förbättring,  vad gäller
manövrerbarhet och agilitiet. Servon i vingarna hade fått
fullt genomslag ungefär 1978-1980. Det som satte fart
på utvecklingen med vingservon var, när Sanwa kom
med sina miniservon.

Ibland kopplade vi sidorodrets stötstång till skevroderservot.
Stackars servo som skulle dra tre roder.

Klaffar och bromsar förekom på 70-talet, då de modelle
r man flög med då, ofta var termikmodeller. Men efter
hand som hangmodellerna utvecklades,  försvann
klaffarna/bromsarna.

Min egen första riktiga hangkärra ritade jag och Pär.
Han tyckte väl,  jag behövde något,  som var lite snabbare.
Alltså konstruerade vi en modell med 300 cm spännvidd,
all flying tail och hela konstruktionen uppbyggd med
Divinycell som formmaterial både till kropp och vingar.

Vi byggde hemma i Pärs källare i Veinge på kvällarna
och hur många gånger jag körde fram och tillbaka dit,
kommer jag inte ihåg.

Kroppen formades  och kläddes med glasfiberväv och
epoxiplast. Vingarnas kärnor skars ut och ändspryglar
limmades på , så man kunde forma profilen.

Det skedde till en börja med med en fogsvans…..och sen finare
och finare verktyg. Att profilen stämde,  mätte man med en stållinjal,
som ju löpte på ändspryglarna.

Innan klädseln på vingarna limmades, vilket jag efter tjat på Pär
fick gjort med epoxiplast, installerades allt linkaget i vingarna
och vingfastsättningen. Plywooden på vingarna, 0,4 mm
treskikts björkply från Finland fixerades med plastpåsar fyllda med sand.

Sedan följde ett evigt putsande och filande, så att ytorna blev fina
Vad som återstod sen var ju  installation av radio och fastställande
av tyngdpunkt.

Profilen Pär valt till mina vingar,  var Eppler 178. Pär,  som samtidig
t med mig,  byggde en egen snabb modell hade naturligtvis valt
den ansett snabbaste profilen E182 och dessutom förtunnat den…

Både jag och Pär skulle provflyga våra modeller på Hovs Hallar
och det blev en otålig väntan på bra väder. Men till slut en lördag
var det dags i början av mars. Kolla av roder och Pär tog första
starten med min modell.

Den flög perfekt. Den var snabb, svängde bra och hade alla de
egenskaper,  vi siktat på. När jag flög den själv,  kändes det,
som att komma från T-Ford till en Formula 1 bil. Då modellen
accelererade ur svängarna,  hördes det härliga profilljudet från
vingarna, vilket sa, att nu går det undan.

När vi körde hem,  fick jag stränga förhållningsorder att hålla
modellen hel !

Det var ju så,  att Hovs Hallartävlingen skulle ju gå om en månad
och då skulle vi vara med.

Hur Pärs modell flög ?  Nja……..inte så där super. Det hade lite
egenheter i svängarna,  när den  belastades med ett många G.
Modellen ville snaprolla. Det var ett stort problem, för Pär kunde
ju inte utnyttja potentialen på kärran till fullo. Man ska tänka på ,
att en hangmodell som flyger på rakorna med 120 km/timman
och sen ska göra en sväng med mycket liten radie, utsätts kanske
för 10 G. Som alla vet måste vingen generera 10 gånger mer lyft då.
Är det då det minsta fel på profil, tyngdpunkt eller anfallsvinkel
går det åt pipan.

Dessutom,  vilket var det värsta för Pär, min modell gled förbi
hans modell på rakorna, trots han hade tunnare profil….

En liten olyckshändelse inträffade sen en kväll i Pärs källare
när vi limmat plywooden på vår vingar. Pär hade en stol i källaren,
som jag satt på, försett med med ganska små fötter på stolsbenen.
Jag lyckades, när jag flyttade min stol sätta ett stolsben på Pärs nya
fina vinge, som låg på golvet och stansa ut ett hål genom vingen
stort som en femkrona…….

Om Pär tyckte nåt om detta ???  Nja……..

Förresten,  vi glömde döpa min modell, men den kallades för en
”Pär Lundqvistare”  på tävlingarna, därför den bar hans konstruktionsideer.
Den som döpte den,  var en optiker från Landskrona vid namn Per Bergqvist
, som flög A15.

Premiärtävlingen 1975 på Hovs Hallar renderade mig en tredje plats
bland 47 deltagare. Klart man blev kaxig……..

Fortsättning följer. Då blir det också bilder från pionjärtiden.

Länk om professor Richard Eppler: http://www.uni-stuttgart.de/uni-kurier/uk94/personalia/p93.html

Läs om teorin bakom Epplers profiler: http://www.airfoils.com/eppler.pdf

Detta är min första riktiga hangkärra. 3 m spänvidd och byggd
enligt nedanstående. Färdig att tävla med våren 1975.
Modellen var prestandamässigt då överlägset det mesta, som
flög på hangen. Sen att jag inte alltid kunde utnyttja kapaciteten
på grund av bristande rutin,  gjorde väl att mina resultat
inte alltid låg bland de 3 bästa.

En tävling minns jag på Fjärås Bräcka vid Kungsbacka.
Vi flög 20 vändor och jag slog tvåan med 32 sekunder……..
Ser jag på modellen i dag, tycker jag den ser ut som ett
bombplan från 1934. Utvecklingen står aldrig still.
 

 

 

 

Kategorier
Flyghistoria

RYMD BALLONG

 

Resan till rymden med en väderballong 

Luke Geissbuhler och hans 7 år gamla son Max tog en väderballong,
en kamera, en takeawaybox och en I-Phone och sände ut på ett
rymdäventyr.

Luke bor i New York och är naturligtvis tekniskt intresserad.
Han arbetar inom media.

Hans rymdäventyr bestod av att köpa en väderballong ,utrusta
den med en hållare gjord av en foamkartong, där han hade en
GoPro Hero videokamera, som filmade i HD. I kartongen hade
han en I-Phone, som kontinuerligt sände GPS-koordinater till
hans egen mobil. Detta möjliggjorde,  att han kunde följa ballongens
resa genom lufthavet.

Hela utrustningen var försedd med en enkel fallskärm, som skulle se
till,  att utrustningen kom ner under kontrollerade former, efter att
ballongen spruckit. Efter hand som ballongen stiger, sjunker ju det
statiska trycket, vilket medför,  att ballongen utvidgas,  tills den brister.

Ballongen steg till mer än 30000 meter, där temperaturen var -60 grader C.
Ballongen utsattes för starka vindar,  som nådde  250 km/timman i hastighet.

Lukes och hans son Max ballong landade ca 50 km från den plats,
där den släpptes.

Hela flygningen varade i lite mer än 100 minuter.

Detta är väderballongen man använde. Här fylls den med helium.
Den fylldes ju bara delvis, eftersom den utvidgas efter hand som den stiger.

Detta är nyttolasten. Allt inlagt i en foambox! Innehållet är en kamera och en I-Phone.

Färdigt för takeoff.

 Fader och son efter att man hämtat rymdskeppet uppe i ett träd beläget 50 km från startplatsen.

 

 

Deras hemsida: http://www.brooklynspaceprogram.org/BSP/Home.html

 

Kategorier
Hangflyg modell

MODELLHANGFLYG

 

Hangflygning, hur började det för mig ?

 

 

 

 

 

 

I min modellflygforntid, alltså cirka 1972, vilket var det året,
då jag skaffade mig min första Fubatautrustning,  hade jag
ingen aning om,  att radioflygarna flög med segelmodeller på hang.


Jag visste vad hang var, för när man flög fullskalasegel i
Västergötland och man var illa ute med dålig höjd, kunde man
ligga och kana på hangen på något av de talrika västgötabergen.
Det gällde att flyga fram och tillbaka tills man fick indikationer
att en termikblåsa släppte framför hanget. Då drog man  iväg
till  blåsan och kurvade upp sig till säker höjd förhoppningsvis.

Men,  att man flög hang med radiostyrda modeller, det var
en överraskning för mig. Jag förstod,  att Pär Lundqvist och
Curt Lennå var intresserade hangflygare. Det blev ju belagt i
Pärs bok, Radioflygboken,  som just då kommit ut.


I Hökaklubbens regi avhölls varje år Hovs Hallartävlingen,
vilket var en välbesökt hangtävling. Tyvärr lades en av Sveriges
största tävlingar ner av Hökaklubben av obegripliga skäl.

Innan tävlingen lockade Pär med mig till Hovs Hallar,
när han och Curt skulle köra några träningspass. Jag minns
när vi åkte ner hur Johnny Johansson  i bilen sa så här:
” Segelkärrorna går fram och tillbaka på Hovet”. Jag tyckte det lät
magiskt på nåt sätt, när han beskrev flygandet.

Själv visste jag knappt,  hur det såg ut på Hovs Hallar,
mer än det jag sett skymta vid den obligatoriska utflykten
till Hallands Väderö med skolan.

Vi gick upp på högsta punkten, 90 m över havet, därför vinden
var nord med dragning på nordöst. Först ut, Pär med en
segelmodell av egen konstruktion byggt med kropp i glasfiber
och vingarna i sprygelkonstruktion klädda med 0.4 mm
treskikts plywood.

Spänvidden var 3 meter och modellen hade ett mycket
komplicerat system med hävarmar och stötstänger
för att kunna manövrera skevroder och klaffar. Märkligt att
det kunde fungera.

Vid denna tiden var det inte vanligt,  att man hade mer än 4 servo
Då gällde det att utnyttja de servon som fanns. Det innebar,
att ett servo fick dra två skevroder via stötstänger och hävarmar.
Tänk hur mycket glapp som kunde uppstå…….jämför med i dag.
Ett servo till varje roder eller yta.

Pärs modell var tung och snyggt. Modellen flög snabbt men hade
vissa otrevligheter för sig. När Pär svängde med lite belastning,
hade den en egenhet att vilka klippa och snaprolla. Varför den gjorde så ?
Who knows, men ska jag gissa, så låg tyngdpunkten för långt bak.
Fast det vågade man ju inte säga till Pär då..

Curt hade en märklig maskin. En före detta motorseglare med
en fruktansvärt full kropp. Den såg ut som en tilltrampad torsk.
Vingarna var nybyggda enligt Pärs koncept med Epplerprofil.
Eppler kan ni läsa om genom att googla. Curts modell hade av
någon anledning ett väldigt typiskt profilljud från vingarna.
När man kunde höra Curts vingar tjuta, då visste vi att det
gick fort. Curt blev nordisk mästare med denna osannolika maskin.

När jag satt och såg,  hur Pär och Curt flög på hanget,
blev jag mycket imponerad och sugen. Detta var jag tvungen
att pröva på. Pär tjatade och vi bestämde,  vi skulle dit igen
och då skulle jag ha med min Cumulus.

Dagen kom och min Cumulus var laddad. Vid den här tiden hade vi
Deac-DKZ-celler med en kapacitet på 400 mA……
Ska jag verkligen kasta ut modellen här,  frågade jag hangmästare Pär.
Han erbjöd sig frikostigt att ta starten för mig. Efter hans
intrimning fick jag, med svettiga händer styra min Cumulus.

När jag flög i det jämna fina lyftet på hanget tänkte på orden,
som Johnny sagt till mig i bilen om hur modellerna flyger fram
och tillbaka på Hovet…..ja, nu var det jag som flög fram och tillbaka.

Känslan var ganska svår att beskriva. Men jag vill säga en stark
känsla av frihet och att kunna utnyttja det lyft,  som skapas av
ett hinder och vinden. Efter detta var jag fast på hangflyget.

Sommaren fortgick på liknade sätt. Vi kunde vara ett tiotal
hangflygare med tillhörande damer och barn, som brukade
åka ner och flyga en heldag. De modeller de flesta  av oss flög
var ganska enkla. Det gjorde att man flög på visst sätt.
Eftersom vingprofilerna var tjocka hade våra modeller dålig
förmåga att flyga fort. Därför tävlade vi att trimma modellen,
så den stod mot vinden och sakta steg. Det gällde alltså,
att komma så högt som möjligt. Det var en avslappnat sätt att flyga.

Hade vi flugit länge och vi misstänkte att mottagareacken var slut,
hur gjorde vi då ? Jo naturligtvis improviserade vi.
Vi drog två kablar från bilbatteriet och eftersom dessa batterier vi
hade var av den gamla sorten med ovanliggande bryggningar av bly,
så kunde vi ta ut 6 Volt. Sen kopplade vi på mottagareacken helt brutalt.
Inga datorstyrda laddare, o fuzz. Bara rätt in med milliamperen !
När acken efter en stund började bli varm kopplade vi loss
Sen flög vi igen. Det enkla är det bästa !

Frekvensen vi flög på var 27 mz amplitudmodulerat.
Jag kan inte erinra mig,  att vi nånsin hade radioproblem, eller det
som nu kallas störningar.

Om vi smällde ? Självklart. Speciellt när vi skulle landa. För de som
varit på Hovs Hallar,  så vet dessa hur svårlandat där är.
Ofta körde man hem med en påse splitter och sen var det bara att
sätta sig och låta flitens lampa lysa i modellflygfabriken.
Det gällde att ha kärran klar om det skulle bli hangvind dan efter.

En episod som stannat i mitt huvud var,  när jag tappade antennen
till sändaren. Så här var det. Jag, Pär och Johnny stod ovanför fortet
på den lilla höjden. Pär hade gått ner och ställt sig just vid kanten där
det var lä och Johnny höll på och mekade men sin modell.
Jag stod på höjden och hade just slängt ut modellen som befann sig
ca 200 meter ut och 200 m upp. Min sändare var den gamla
Futabamodellen, där antennen skruvas  i ett antennfäste på ovansidan.
Man sticker ner antennen i en styrhylsa och skruvar dit den så den sitter låst.

När jag gjorde en oförsiktigt rörelse trillade till min oförställda
förvåning och fasa min antenn ner på marken. Inte bara trillade
den ner på marken, den gled vidare nedåt på den branta markens
nedbetade gräs och försvann in i enebuskbeståndet vid hangkanten.
Vad gör man ?

Eftersom jag var sändareamatör då och fortfarande är, tänkte
jag i 3 sekunder,  vad som kunde göras, allt under det att min
modell majestätiskt gled totalt ovetande,  att piloten inte hade
något antenn. Då kom jag på,  nästan det enda jag kunde göra.
Jag var tvungen att improvisera fram  något som hjälpligt kunde
fungera som antenn. Det enda av metall jag hade var, en nyckelknippa.

Den var en  stor nyckelknippa  och i denna knippa fanns en
Coka-Cola öppnare. Fram med knippan som en blixt. Sen anslöt
jag flasköppnaren och  nyckelringen till  antennuttaget å sändaren.
Så min antenn bestod av: En smal nyckel jag körde ner i  antennhålet
på sändaren, sen följde en ganska stor nyckelring och som kronan
på verket en Coca-Cola öppnare !

Total längd på den osannolika antennen ca  25 cm.

Om det fungerade ? Jo det gjorde det. Jag fick kontakt med
modellen och hankade mig in över land och lyckades landa
min klenod med klappande hjärta. Att detta fungerade,
kan skyllas på det faktum,  att dåtidens sändare hade ganska hög
uteffekt och att jag hade fri sikt till modellen.

Antennen lyckades jag efter viss akrobatik fiska upp ur enebuskarna.

Moralen  i denna historia får väl vara att inte glömma
Coka-Colaöppnaren, när du radioflyger….

 

Kategorier
Flyghistoria

FLYGET I SVERIGE 100 ÅR

 

 

 

Lyssna på ett bra program från SR

 

 

 

 

 

Michael Carlssons Bleriot

Sverige har ju i år firat flygets 100-årsdag i landet.

Sveriges Radio har gjort ett antal program med anledning av detta,
som är väl värda att lyssna på.

Förutom de två länkarna jag lagt här nere finns det ytterligare
5-8 program i nedersta länken,
som beskriver enskilda piloter
och händelser.

Dessa programmen är väl värda att lyssna på.

Här är länkarna till Vetenskapsradions minnesprogram:

 http://sverigesradio.se/sida/artikel.aspx?programid=
406&artikel=3782612

 http://sverigesradio.se/sida/gruppsida.aspx?programid
=406&artikel=3774405&grupp=4313&sida=7

 http://sverigesradio.se/sida/artikel.aspx?programid=
1602&artikel=4014645

Kategorier
Okategoriserade

BLUE PHOENIX 2 M GLIDER

 

 

 

 

Jag köpte två halvraddiga Blå Fenixar

 

 

 

…i Tarp och nu har jag fixat till den ena. Ny motor, ny nos,
sett till att vingen har rätt anfallsvinkel, satt dit större
sidoroder och fixat sega linkage så de går hel utan friktion.
Förresten om ni undrar,  varför rubriken är på engelska,
är det inte för jag är högfärdig,  utan det ingår i SEO.

Provflög egentligen redan i går med gott resultat
, men ville testa i lite hårdare vind. Modellen flög superbt.
Ingenting behöver ändras på den,  utan allt stämde.
Det enda som återstår,  är att kolla tyngdpunktens
placering med hänsyn till termikflygning.

Jag har en  Blå Fenix till, som är byggd för segel
utan motor.

Vill du ha mycket flygtid, skaffa en elseglare !

Det är bekymmersfritt.

 

 

 

Behändig att ha med i bilen och i de flesta bilar kan den tas med helt monterad.

Trefasmotor från Kina, 1750 4-cells LiPo och fällbar 9 x 5.

 

 

 

Kategorier
Flyghistoria Modellflyg teknik

IGG STORSEGELTRÄFF ÅLLEBERG DEL III.

 

 

 

 

 

 

Har ni varit på Segelflygmuseet på Ålleberg ?

 

 

 

 

Nähä, men det är värt en resa. Under förutsättning man är intresserad av flygkultur.

Ållebergs historia började på 40-talet,  när man grundade ett segelflygcentrum
med utbildning inom de olika ämnena,  som är knutna till  begreppet segelflyg.

Den verkliga starten var 1944,  då skolan drog igång efter omfattande arbeten.
Anläggningen betalades till stor del av staten, eller kan man säga flygvapnet,
då flygvapnet såg sponsringen av segelflygutbildningen,  som ett sätt att ge
kommande militärpiloter grundläggande flygutbildning.

Bidrag för utbildning av segelflygpiloter hängde kvar lång tid och jag minns,
när jag tog mitt segelcert 1968 att det utgick statsbidrag.

Ålleberg hade en verklig storhetstid under 40-50-talet med olika tillställningar
och flygdagar. Det var vid denna tid,   det inte fanns tv, datorer eller mobiltelefoner,
utan ville man få en upplevelse,  då fick man pallra sig iväg till  evenemanget.
På söndagar kunde det vara stora åskådarmassor,  som såg på,  när kärrorna
åkte fram och tillbaka på till exempel västhanget.

Allting förändrades så även Ålleberg. Det gamla sättet att utbilda med
glidflygplan modell SG-38, Grunau Baby, Olympia föll bort,  när flygbogseringen
tog över.

Tänk själv att sitta som elev på en SG-38 på startbryggan, beredd att
skjutas ut i,  om inte det okända så i alla fall för piloten något helt nytt.
Haverier var,  enligt de som var med på den tiden,  legio.

Men eftersom planen var byggda i trä och duk, var det bara att laska och
limma och sen på det igen.

Utvecklingen medförde,  att de uthuggningar som fanns på Ost- och
Västhanget slyade igen. Startbryggorna revs,  eftersom det inte användes.

 Ålleberg blev en modern utbildningsenhet under befäl av den dynamiske
Lennart Ståhlfors, kallad Stålis. Många är väl de flygare,  som hittat på
nåt man inte fick,  som stått framför Stålis och fått sig en avhyvling.

Fråga mig…….

Senare chef på Ålleberg blev Anders Blom, en flygkompis från Skövde
med gedigna kunskaper.

På sent 90-tal fanns det krafter,  som ansåg man borde restaurera
Västhanget och återuppbygga startbryggan. Detta skedde och i början
av 2000-talet stod den i all sin glans igen vid Västhanget.
Anders Blom gjorde den första gummirepsstarten där på ca 50 år !

Skärmflygare, hängflygare och modellflygare har fortsatt att hålla
beväxningen nere på hanget,  så det ska gå att utnyttja för dessas
hobbies.

Vidare finns på Västhanget en startbrygga för hängglidare.

Museet är en skapelse sent 90-tal och tidigt 2000-tal. Där har man
samlat historiskt intressanta flygplan,  som har anknytning till svenskt
segelflyg och Ållebergs historia. År ni på Ålleberg,  ska ni naturligtvis
besöka museet. Det kostar 35 spänn,  så det är inte dyrt.

En av de som var med och byggde upp museet,  var Yngve Lindgren,
en slöjdlärare från Tidaholm,  som segelflög i Skövde,  de åren jag
bodde där. Han är still going strong.

I anslutning till Västhanget ligger en restaurant,  som sörjer för
kroppens spis.

Naturen  på Ålleberg är vacker. I skogen bakom hangaren är det
nästan en tropisk växtlighet och många olika fågelarter finns där.
Uppe på Ålleberg finns ett kärr märkvärdigt nog.

Utsikten från Ålleberg är vidunderlig ut över Västergötlands platta kulturbygd
De olika Västgötabergen sticker upp som tjocka pelare här och var och
bryter det platta landskapet. 

Varför det finns Västgötaberg,  beror på att toppen av till exempel Ålleberg,
är belagd med hårda bergarter,  som inte så lätt eroderar,  till skillnad från
den övriga berggrunden,  som är sedimentära bergarter som kalk- och sandsten.
Så där hårda bergarter finns,  där står bergen kvar som minnesmärken,
om hur det såg ut för  evigheter sen.

Här är lite diversebilder från natur och museum med kommentarer.

En vinjett av IGG-Meetinget 2010 Ålleberg 

Som jag tidigare skrivit, krävs det rejäla transportdon, om man ska ha med sig stora grejor !

En modell av en Viggen från tidigt 60-tal. Gummimotordriven och kallad ”Fågel Blå”.

Har man ingen husbil med däremot en stor mc,
så löser man övernattningsproblemet så här elegant.
 

Del av mossen på Ålleberg 

Segelflygmuseet Ålleberg, där en pilot glömde bromsa och  flög in i gaveln…..

En Slingsby skolkärra för dk. Ser ut som den kommer från ………just det, England.

Ållebergs ärrade Grunau Baby.

Här kan man se resultatet av små malörer på torsionsnäsan. Den är laskad och lagad åtskilliga gånger.

Olika höjdstyrverk

Interiör från museet.

Babyvingen. 


Denna bilden illustrerar begreppet skränkning eller tordering av en vinge.
Den rödvita vingen i ovankanten är väldigt tydligt skränkt, vilket innebär,
att man har mindre anfallsvinkel i spetsen, så om man flyger nära vikningsgränsen
ska den laminära strömningen hållas kvar längre i spetsen än längre in på vingen
. Om den laminära strömningen runt vingen försvinner i spetsen går den
omvandlingen snabbt in mot vingroten. En skränkning hjälper till att hålla kvar
strömningen där den ska vara.

Kolla så ser ni att vingen är vriden uppåt i spetsen och det inkluderar skevrodret.

Något som modellflygare ska tänka på idag. Till exempel en enkel modell som
Blue Phoenix får mycket bättre egenskaper i termikkurvning om man skränker
ytteröronen 5-7 mm.

Därför om ni av någon anledning flyger nära eller under stallgränsen och ska landa
använd sidoroder för använder ni skevroder i ett gränsläge och era skevroder är
dåligt differentierade kommer ett nerfällt skevroder att markant öka vingens
anfallsvinkel och en vikning över den vingen kan ske plötsligt.

Ett vackert plan som var högpresterande på sin tid, vilket var sent 30-tal och 40-talet. i Sverige flögs den tills 1959.

En Weihe eller  på svenska kärrhök.

Data

Om man vill flyga cab tar man denna kärran…

Babyfalken

Hur en Bergfalkekropp är uppbyggd med rör för att uppnå max styrka och min vikt.
Gjorde man en groundloop med en Bergfalke kunde kroppen krökas.

 I Skövde hade vi en Bergfalke SE-TAZ som hade en något krokig kropp,
vilket medförde att det stod planets bok noterat av tror jag ”Klevas” på
Ålleberg att ”Planet går att få i en spinliknande rörelse”.
Det var den enda Bergfalken man kunde få i en sån rörelse av den versionen tror jag !

SG-38. Härligt att flyga en sån !

Undrar hur många svettiga fötter som trampat sidoroder i detta pedalstället ?

En Fi-1, som byggdes av FlygIndustri i Halmstad på 40-talets mitt.
Var tillåten för avancerad flygning.

Detta plan har varit på Island, därav registreringen TF-SOR

Främre delen av en Anfänger, som var ett glidflygplan av enklare modell än SG-38.

Just det, Anfänger vilket betyder nybörjare på tyska. Passande namn. 

En nostalgisk affisch från sent 50-tal . Kolla texten om  J 29: ” Lika snabb som ljudet”!

Hängglidarna ställer upp för att bli uppbogserade för att kunna flyga termik.

En av min medresande Timo, skärmflygare som jag,
från Kågeröd , drömmer om att skärmflyga på Ålleberg.

En SuperCub på finalen med bogserlinan efter sig. 

Avslutningsbilden från Ålleberg med utsikt mot Mösseberg och Falköping.

 

 

Kategorier
Modellflyg teknik Teknik, allmän

IGG STORSEGELTRÄFF PÅ ÅLLEBERG VÄSTERGÖTLAND 2010

 

 

 

 

 

 

Stora segelmodeller

Fantastiska hembyggda modellmotorer.

 

 

 

 

 

 

 

  

  

Det sammanfattar,  vad som bjöds i huvudsak på på storsegelträffen uppe på Ålleberg,
som ju alla vet, är segelflygets centrum i Sverige alltsedan 1944.

Storsegelträffen arrangeras av IGG, vilket är tyska och betyder Interessen Gemeinschaft Grossegler.

Storseglare var det verkligen. Upp till 9 meters spännvidd. Uppe i luften var de
naturligtvis svåra att skilja från en fullskalakärra. Dessa stora modeller har utsökta
flygegenskaper och i luften,  ser man till skillnad mot en mindre modell det stora
sidoförhållandet på vingen. Vingarna är väldigt långa och smala, precis som på
fullskalamodellerna.

Man flög 2010 på 35 mHz och så gott som alla modeller använde en vertikal sprötantenn.
Jag trodde man gått in för 2.4 gHz,  men en pilot jag pratade med, sa att man litade
inte fullt ut på 2.4……..roligt att höra nu,  när jag skippat all 35 mHz utrustning och
bunkrat upp 2.4 gHz grejor……… Men som sagt, Time will tell!

Till förfogande hade arrangörerna 3 rejäla bogserkärror. Det vill jag säga, att de som
flög med 3-4 metersmodeller, de fick verkligen hänga i,  för dessa mindre modellerna
åkte efter bogserkärran nästan vertikalt.

Vädret var perfekt med vinden längs stråket och i skyn  hade vi 3/8 Cumulus.
Själv tyckte jag  en del modeller, trots sin storlek, var svåra att se. Kanske på grund
av att de var helt vita. En pilot jag pratade med,   sa att de kan vara knepiga under
vissa ljusförhållanden att se.

Inga haverier kunde jag se på söndagen, utan allt förflöt perfekt för deltagarna under
avslappnad stämning. Fast jag vet ju inte,  om jag skulle vara speciellt avslappnad,
om jag flög en modell för 75000 spänn…………

För den som inte besökt en sån här träff,  rekommenderar jag ett besök nästa år.
Det är intressant och lärorikt.

Förutom storseglarna i klassisk form fanns det också stora (6m spv) elseglare från
en tysk firma. Jag måste säga att jag blev sjuk på en sån modell. Priset ? En bagatell,
35000 spänn.

Inne i en av hangarerna hade man den traditionella utställningen av hembyggda
modellmotorer. Hur ska jag uttrycka det…..om jag blev överväldigad ? Jo det vill jag lova.
Vilken kunskap dessa byggare har. Vilken vilja man måste ha bakom för att dra ett
motorprojekt iland.
Dessa motorer var mästerverk i alla avseenden. Inte bara var de snygga att se på,
de fungerade perfekt också. Att höra en modell av en Rolls-Royce Merlin V-12 köra,
det är en upplevelse för ögat och örat. Eller upplev när man kör en 36 kubiks
18 cylindrig dubbelstjärna.

Denna dubbelstjärnan hade en osannolik låg tomgång. Eller varför inte lyssna på
en en V-8  med kompressor ?

Det fanns också ångmaskiner, bilar och andra mekaniska mästerverk.

Jag har delat upp reportaget i tre delar; Först nu motorer, sen flygplan och sist
själva Ålleberg med sitt museum.

Så här kommer några bilder på motorer och teknik, allt är hembyggt.
Jag lägger upp bilder på sidan och sen lägger jag alla bilder undertill i ett klickbart galleri.

Hoppa in i baksits och flyg med !

18 cylindrig dubbelstjärna. En stjärnmotor har alltid ojämnt antal cylindrar per stjärna.
Alltså 3-5-7-9 cylindrar. Sen kan man lägga stjärnorna på varandra så två stjärnor blir
då 2 x 9 = 18 cylindrar. Har du 4 stjärnor på varandra har du en en quadruppelstjärnmotor.
Att man har ojämnt antal cylindrar beror på det sättet man mekaniskt anbringar
huvudvevstaken och hjälpvevstakarna vid vevaxeln.

Denna motorn hade en osannolikt låg tomgång. Hur mycket
tänkande och arbete ligger bakom detaljerna ?

En egenkonstruerad V-12, som jag förstod det.Att bara bygga kylaren,
hur lång tid tog det tror ni ?  Kylvätskan var glykol och vatten. Man har
alltid glykol i tunnväggiga motorer för att undvika sideneffekten på
de varma ytorna.

Det betyder, att vanligt vatten skulle förångas och därmed skulle den
kylande förmågan försvinna. Glykolen förhindrar det. Så glykol i
högpresterande motorer har intet att göra med,  att man ska förhindra
sönderfrysning, utan det är för ta bort sideneffekten.Ytorna som blir heta
får ett sidenliknande utseende, när de små gasbubblorna bildas, därav namnet.

En modell av motorn som satt i ”Spirit of St Louis”
en Ryan som Lindberg flög över Atlanten med .

Ett konstverk och en fungerande motor !

En V-8 med OHC. Undrar hur många timmar byggaren har kört sin gnist på denna motorn ?

En 18-cylindrig stjärnmotor. Se på storleken jämfört med byggarens hand !!!!

Finmekanik av högsta potens. Att justera in ventilern, 36 styck,
det kräver väl,  om inte sin man så i alla fall mycket tid.

En V-12 med sitt tändsystem.

Eller varför inte en liten ca 3 kubiks utombordare
med två cylindrar från 50-talet måhända?

En hembyggd ångmaskin av vilka det fanns flera.
Både enkla upp till trippelcompoundmaskiner.

40 kubiks? boxer med tändstiftständning.

Ännu en V-8 motor.

Ingen dålig line denna byggaren presenterar !

En Rolls-Royce Merlin in i minsta detalj som fungerar perfekt.
Kolla navreduktionen/propellerväxeln.

En V-8. Undrar om den har hemisfäriska förbränningsrum?

Kolla detaljerna.

4-cylindrig radmotor.

Hur lång tid tar det att göra manifolden ?

Den ouppnåeliga drömmen för en 5-åring. En riktig racerbil……..

4-cylindrig motor. Se på alla detaljer. Allt fungerade som på originalet.

Vikt ca 80 kg !

En råmaterialsats till en Anzani 3-cylindrig stjärnmotor ca 1910
. Alltså hundra år gammal konstruktion !

Detta var några av motorerna. Jag lägger upp ett galleri sen med alla motorbilderna .

 

Nästa avsnitt blir segelplan.

 

 

matsKlicka på ”View with Piclens” så blir det lätt om du vill kolla galleriet. 

[nggallery id=59]

Kategorier
Skärmflygeri

KANONDAG PÅ HOVS HALLAR

 

Ja det small inte, men…..

 

  

…det var perfekta förutsättninga för att flyga skärm. Det var utlovat 6-8 m/sek nordväst,
vilket är det absolut bästa för skärmflyg.

Nä jag kom vid 11-tiden fanns redan Anders den trevlige där och gick och vankade på hanget.
Han tyckte vinden var lite byig och hård, vilket jag höll med om. Så vi parawaitade och
inväntade dels minskande vind, dels fler piloter. Piggis kom och frågade naturligtvis
varför vi inte flög och påstod som vanligt att: ”Det är flygbart nu”….
(Jag tänkte jag skulle frågat om det var flygbart, när han stod insnodd i  de taggiga
buskarna, men jag är en snäll människa….för det mesta)

Japp vi hängde på selarn, tillsammans med ännu en pilot som kommit,  vilket var
HippieKristoffer. Så hela gänget kom i luften. Lyftet var bra, men vinden låg något
snett och det påverkade ju hur vi kunde flyga. Eftersom solen sken var det ju en
njutning att sitta under skärmen, för man kunde gotta sig åt utsikten och flygningen
i det fina vädret.

Gustav dök upp och senare Christina, licenstanten. Vinden minskade något,
vilket Piggis fick erfara, då han gjorde en oplanerad landning  i de hemska buskarna
med sina miljoner  vassa taggar. Man känner sig ganska hjälplös när man står i
buskarna helt omsluten av vassa taggar och skärmen och linorna garanterat är
insnodda i grenarna.

Men med gemensamma krafter fick vi loss Piggis och han fick ut sin skärm hel
Det är väldigt lätt att skada skärmen vid ett sånt här tillfälle, varför man måste
ta loss den försiktigt, så man inte drar sönder den. Hur mycket en skärm kostar ? 25-35000 spänn.

Att flyga skärm på Hovs Hallar är alltid en utmaning, men upplevelsen man får
dels av flygningen och dels av naturupplevelsen från skärmen är värd all möda.

Så kl 1600 packade jag och Piggis och knallade upp till parkering för vidare
transport hem.

 

 

 

Videon hittar ni under bilderna.

 

 

HippieKristoffers nya (gamla)skärm. Högpresterande,
men han har en ännu bättre . Man blir avundsjuk….

Nu ska Piggis visa hur man drar upp en skärm i lite blåsigt väder med turbulens…
.först lägga ut den snyggt på marken mot vinden och kolla linorna och annat.

Sen drar vi rätt linor så skärmen fångar vind så den fylls och vill stiga.

Piggis håller koll på läget och sin skärm under uppdragningen
. En skärm har en yta av mellan 20-30 kvadratmeter. Tänk på
vad som händer, när vinden får fatt i den, när den är halvvägs uppe !
Du åker med som en vante med vinden över gärdsgårdar och staket !

Nu ha han fått upp skärmen, bromsat den, så den inte fortsätter.
Nu kollar han att linorna är ok och att skärmen är fullt fylld.
Efter det vänder han sig 180 grader så han står i flygriktningen
med bromsarna dragna lite så inte skärmen sticker framåt.

…och så ta Piggis ett par steg framåt och lättar nästan omedelbart.

Nu gäller det att sätta sig tillrätta i selen, så man sitter bekvämt
och lägga upp strategin för sin flygning. Man vet aldrig, hur det
är på hanget,  förrän man flyger. Sen njuter man !

 

 

Piggis begrundar sitt öde bland taggebuskarna……

Inget roligt läge, men skärmen ligger inte helt insnodd i alla fall.

Ser inte speciellt vänligt  och inbjudande ut att landa i dessa buskar.
…Jo jag har också gjort det…två gånger!

Efter search and rescue !

Skam den som ger sig, Piggis i luften igen.

Piggis och Gustav flyger rote

Gustav, Christoffer och Christina parawaitar.

Vitsippan glädjer betraktaren.

 

Kategorier
Modellflyg teknik

AERODYNAMIK FÖR DEN SOM VILL VETA …

 

…så lägger jag upp lite om ämnet.

 

 

 

 

 

 

Ovanstående skärmflygare hänger under en perfekt formad vingprofil.
Inblåsande luft håller profilen på skärmen. 

 

AERODYNAMISKA GRUNDSATSER,  SOM BESTÄMMER EGENSKAPER  HOS EN VINGE.

 

Detta är inget doktorandarbete från NASA, utan är mitt försök, att
på ett förenklat sätt förklara vissa grundläggande fysikaliska begrepp i
samband med skapandet av lyft från en vinge .

 

 4 krafter påverkar en vinge :

 Lyftkraften-Gravitationen-Motståndet-Framdrivningen

 

 LYFTKRAFTEN

 

Se på en fotboll. Om man skjuter den med skruv, så den roterar,
så kommer den, om den roterar medsols att vilja avvika åt höger.
Detta på grund av, att luftskiktet närmast bollens yta förs över
till den andra sidan. Detta tillskott av strömmande luft ger ett
energitillskott på högersidan av bollen och därmed ökar
lufthastigheten.
Vi vet från Bernoullis Lag, att om man ökar hastigheten hos
en gas eller vätska, så sjunker trycket.
Denna tryckförändring suger bollen åt höger.

                             

 

Bollen ovan skruvas medsols och avviker mot toppen
av papperet. Linjerna visar luftens hastighet/tryckförändringen.
Där linjerna är täta=lägre tryck-sug.
Bollen sedd från ovan. 

För att levandegöra Bernoullis Lag, kan ni lägga ett
A4 papper på ett bord och hålla i det i kortsidan.
Papperet ska ligga platt på bordet. Blås sen parallellt med
bord/papper och ni kommer att se, att papperet lyfter.
Det är ett resultat av, att hastigheten på luften ovan
pappersarket ökar och trycket sjunker.

 

En förutsättning för att en vinge ska kunna skapa lyft,
är att begreppet CIRKULATION uppstår.

 

                                                 Den som skapade begreppet cirkulation, var två
                                                 vetenskapsmän, Kutta och Joukowski.

 

För att visa vad cirkulation är så tänk på den skruvade fotbollen.
Andra exempel på cirkulation är de leksaksflygplan i plast,
som har vingar lagrade längs mitten på kordan och som är
X-formade i profil. När modellplanet, som är fäst i en lina,
placeras i vinden börjar vingarna rotera medsols och då
sker en transport av energi från undersida till ovansida på
vingen, varvid lyft uppstår. Dessa plan var populära på
60-talet och det rasslande, virrande  ljudet av de roterande
vingarna var välkända fenomen på stränderna vid västkusten,
där jag bodde.
Dessa plan finns fortfarande att köpa.

 

 

En principskiss av de leksaksplan som var populära på
stränderna på 60-talet. Observera riktningen på
vingarnas rotation. 

Ett annat sätt att förstå cirkulation är att ta ett papprör och
linda om ett snöre en 10 varv. Ta sen och fäst snöret i en pinne
av 1 meters längd. Lägg röret på ett bord och dra till med pinnen
så pappröret börjar rotera. Vad händer? Jo det kommer att flyga
i en parabel tack vare cirkulationen, som transporterar energi från
undersida till ovansida, varvid trycket sjunker och röret sugs uppåt. 

 

Här ovan är en schematisk bild hur luften rör
sig runt en vinge sett från en betraktare på marken.
Observera de långa pilarna på
ovansidan,
som visar hög hastighet/lågt tryck och ett
Starkt downwash.

 Ännu ett exempel på cirkulationsprincipen:
Om man tappar en vinge i luften, eller om man
släpper ett 3-millimeters balsaflak från 100 meters
höjd, vad händer?
Jo vingen eller flaket faller inte helt slumpmässigt
mot marken, utan det börja rotera runt sin egen
längdaxel och kava sig framåt i cirklar, om det är
en tapererad vinge, med rotation motsols. 

Hur blir det så? Jo vingen eller flaket går in i en
spontan rotation och då uppstår precis som på
modellen med roterande vingar en transport av
energi från undersida till ovansida och betingelserna
för cirkulation är uppfyllda. 

Tror ni inte mig så ta ett kreditkort och flippa iväg
det, så det roterar mot er, så får ni se, om ni är
skickliga, vad som händer. 

När cirkulationen är igång, så resulterar det i
ett utpräglat downwash eller nedåt/bakåtriktat
energiflöde.
Alltså luften ovan vingen får högre fart och denna
energi lämnar vingens bakkant snett nedåt.

Från Newtons Lag vet vi,  att mot varje kraft svarar
en annan kraft lika stor i motsatt riktning. Alltså
den nedåtriktade energin bakom vingen skapar lyft,
så vingen strävar uppåt.

Vid framkanten har du ett utpräglat upwash. 

 

 

               Bilden illustrerar den mycket utpräglade nedåtriktade kraften bakom planet .

 

 

 

 

Här visas klart luftens flöde och var det finns up- respektive downwash.
Se även var stagnationspunkterna finns och den kraftigt skilda ankomsttiden
på de ”blåa” paketen vid bakkanten.

 

En förutsättning för Kutta och Joukowskis teorem,
var det grundläggande arbete, som gjordes av Henri
Coanda, som var en rumänsk vetenskapsman.


Han lade märke till en egenskap hos gaser eller
vätskor, som gjorde, att en strömmande gas eller
vätska ville ”ansluta” till ett näraliggande föremål
och stanna där.


Om du närmar dig en vattenstråle i din vask
med en flaskhals eller liknande föremål, så ser ni,
hur strålen avböjs mot flaskan.
Detta kallas Coandaeffekten.

 Coandaeffekten uppstår, på grund av att luftens/vätskans
viskositet (hur trögt ett ämne flyter) gör, att vätskan eller
gasen vill ”klibba” vid föremålet. På en vinge är det ju
bland annat viskositeten hos luft, som gör, att den vill
följa vingens profil.

 

 

 

 

 

 

 

 

 

 

Denna profil har ingen anfallsvinkel, så den skapar ingen cirkulation eller lyft.

 

Om man ökar anfallsvinkeln, kommer stagnationspunkten
vid vingens framkant att krypa bakåt, därför att vid ökad
anfallsvinkel, kräver vingen mer tillförd energi för att
fungera.

Således flyttar sig stagnationspunkten bakåt,
så mer luft kan transporteras från undersidan till översidan.

Högre anfallsvinkel kräver mer energi-den hämtas från
undersidan och stagnationspunkten flyttas bakåt.

Luften vid stagnationspunkten står stilla. En fluga kan
alltså ta en behaglig söndagspromenad längs vingens
framkant även på ett supersnabbt plan, om förhållandena
är statiska, alltså ingen förändring i hastighet eller
anfallsvinkel.

 

 

Här är en profil med mycket anfallsvinkel. Observera hur
stagnationspunkten har krupit bakåt på undersidan för
att kunna ”hämta” mer luft till ovansidan.
Lägg också märke till hur ”luftpaketen” på ovansidan
ligger långt före undersidans paket vid bakkanten.

Detta beskriver enkelt hur lyft genereras. 

 

Om man ökar anfallsvinkeln för mycket, kommer
strömningen över vingens ovansida till slut att bli så
störd av turbulens (virvlar), att vingen stallar och
tappar all lyftkraft.  Kom ihåg det gamla friflyguttrycket:
”Han pallade så han stallade” !

En vinge kan uppleva ovanstående fenomen, dels
om man flyger med för hög nos, eller om man
svänger brant.

Det vill säga stall och avlösning på vingen uppstår
vid för höga belastningar. Vid en sväng med 3 G så
måste vingen ju producera 3 gånger så mycket lyftkraft
som vid planflykt.


Så flyger du för sakta och drar en brant sväng, måste
vingen producera mer lyftkraft, Den tar sin energi från
hastigheten/motorn, vilket betyder, att farten går ner
brant och då händer det, vi inte vill:
Vingen överstegrar och planet snappar in i en spinn,
om du har otur.

  

 Här är en vinge som flyger med: För låg fart eller med
för mycket anfallsvinkel.


Vingen är överstegrad och strömningen på ovansidan
är helt turbulent och all lyftkraft är borta!

Luftskiktet närmast vingen är stillastående…
Om ni inte tror mig så kolla bladen på en gammal
ventilationsfläkt.
Varför tror ni att de är dammiga?Hur tjockt är detta
stillastående skikt? På en modell 0.5-1.5 mm.
Det är dock inte fördelat lika över hela vingytan, utan
det varierar av olika orsaker.

 

                                                        REYNOLDS TAL

 

Det som påverkar vingens förmåga att behålla en
effektiv strömning, är dess Re-Tal.


Re-Talet bestämmer var på profilen övergången från
laminär till turbulent strömning sker.


Man strävar efter att få denna punkt så långt bak som möjligt.
Re-Talet är ett begrepp, som härleds till en fysiker på 1800-talet,
som hette Reynolds.

 

Man räknar ut Re-talet på följande sätt:

Luftens viskositet x hastigheten i m/sekund x kordan i meter

För luftens viskositet använder man i vardagligt tal
en koefficient på 70000, så har vi en modell som flyger
med 72 km/timmen och har en korda av 25 cm så får vi
följande Re-tal:

70000 x 20 x 0.25 =350000

Detta är ett värde, som är klart godkänt. En modell bör
ligga mellan 100000–500000 i Re-tal för att få behagliga
egenskaper.
 

Kan man göra något för att förbättra egenskaperna vid
dåliga Re-tal.


Ja ett gammalt friflygknep är att sätta turbulatorer på
vingens framkant som skapar en ”kontrollerad” turbulent
kan vi kalla gränsskiktsströmning.

 Vad är en turbulator? Ja det kan vara allt från en sytråd
fastlackad till små triangelformade sågbladsliknande
konstruktioner vid framkanten.


En turbulator hjälper också till att hålla seperationsbubblan
under kontroll på profilens översida vid låga Re-Tal.

 

                       INDUCERAT  MOTSTÅND ELLER LYFTKRAFTSMOTSTÅNDET

 

Nu är det ju så, att inget i världen är gratis, inte heller lyft.
Om du har en vinge med cirkulation, som skapar lyftkraft,
så kommer detta att skapa ett motstånd,
som kallas lyftkraftsmotståndet eller det inducerade
motståndet. 

När cirkulationen var igång, minns vi, vi har ett markera
t undertryck på ovansidan och ett inte lika markerat
övertryck på undersidan. Eftersom allt i naturen strävar
efter jämvikt, kommer övertrycket från undersidan att
flytta sig via vingspetsen till ovansidans undertryck.
Det är ju det enda sättet tryckutjämningen kan ske på.

Då händer det, att i spetsarna bildas virvlar, som skruvar
sig mot flygplanet på respektive sida. Skruven roterar
alltså motsols på högervingen och medsols på vänstervingen
sett framifrån. Dessa virvlar kan vara mycket kraftiga
och finns efter vingen, så länge den flyger. De börjar på
startbanan och hänger kvar tills modellen nästan står stilla,
då du landat.

 

 Observera den kraftiga virveln vid vingspetsen. Detta är ett resultat
av lyftkraftsmotståndet då undersidans övertryck smiter över till
ovansidan. Det finns ingen möjlighet att bli av med
virvlarna vid spetsarna mer än på ett sätt och det är
att stanna på marken.

 

 

                                        Inducerat motstånd utan och med winglets

 Man kan emellertid reducera det inducerade motståndet
genom att använda vingar med stort sidoförhållande.
Se på ett segelplan. De moderna trafikplanen har winglets,
dels för att minska inducerade motståndet dels för att öka spännvidden.

 

 Winglets på ett modernt passagerarplan. Winglets ökar
spännvidden och förbättrar bränsleekonomin.

 

                                                              SIDOFÖRHÅLLANDET

 

Sidoförhållandet är förhållandet mellan korda och spännvidd.


Om sidoförhållandet är 1:5 betyder det att kordan är en meter
och spännvidden är fem meter. 

För att levandegöra detta med vingens sidoförhållande
: En lång smal kniv skär mer tårta än en kniv med tjockt
och kort blad.

Alltså en vinge som är lång och smal ”möter” mer luft
än en kort och tjock.
Sen kan man ha modeller, som man vill ha korta och breda
vingar på av vissa orsaker. Det kan vara, för att de ska bli
manövrerbara på grund av övermotorisering och med massan
samlad i sitt rörelsecentrum.


Se hur en Boeing 707 rollar och jämför med en Pitts!

 

 Skillnaden mellan litet, respektive stort sidoförhållande syns här tydligt. 

Förutom lyftkraftsmotståndet, som svarar för den överväldigande
delen av motståndet, så finns det frontalmotstånd, vilket ju är
den yta som planet visar upp frontalt mot den mötande luften
och ytmotståndet på planets ytor.

Till exempel så kommer genom viskositeten luften att ”klibba”
på en dåligt slipad/utformad kropp.
Vi modellflygare kan i stort bortse från detta, då vi utför beräkningar
för Rc-modeller.

Kan en vinge se ut hur som helst?

Ja i stort sett. Vad som krävs för att skapa cirkulation, är en
area (vingen) anfallsvinkel, hastighet och ett medium, som har
viskositet (luft).

En masonitskiva fungerar som vinge utan problem.
Naturligtvis fungerar en riktig profil bättre, därför den effektivare
påverkar den förbiströmmande luften. 

Ska man försöka definiera en vinges funktion, så kan man säga,
att en vinge är en mycket effektiv maskin, som ändrar
luftens riktning. 

Det finns alltså inget, som skiljer en masonitskivas funktion
som vinge från en ”Riktig” vinge. Båda två fungerar som en
luftpump, när betingelserna för cirkulation är uppfyllda.

 Som vi alla vet, kan ett flygplan flyga på rygg eller inverterat.
En modern konstflygmaskin har i regel en symmetrisk profil,
vilket ger i stort samma egenskaper inverterat som rättvänt. 

Men en kraftigt bärande profil, exempelvis en fet Clark Y-profil,
hur kan den skapa lyft inverterat? 

Inga problem.

Genom att öka anfallsvinkeln när du flyger inverterat, vilket du
märker , genom att du får hålla upp nosen mer, än då du
flyger rättvänt, så kommer du att skapa betingelser för cirkulation
och din vinge skapar lyftkraft.

Hur kraftig är cirkulationen? Ja ett vanligt privatplan av Cessna 152
storlek 125-150 hk ändrar riktningen (pumpar luft) varje sekund,
som väger cirka 8 ton!
Klart det blir lyftkraft av det.

Om man ska gå på de preferenser,vilka hävdades förr, av de
som omhuldade teorin om luftmolekylernas längre väg på
översidan än undersidan och som möttes vid bakkanten och
då skapade ett undertryck som sög upp vingen, så skulle en
Cessna av ovanstående storlek flyga med ca 800 km i timmen
för att kunna hålla sig i luften…

 

  

Här ser ni att ” Molekylentusiasterna” är ute på hal is.
Observera att luftpaketen INTE möts samtidigt vid bakkanten. 

 

Molekylteorin är falsk, för ”luftpaketen” som delar sig vid främre
stagnationspunkten möts inte alls vid bakkanten. Luftpaketen från
översidan når bakkanten, långt innan luftpaketen från undersidan
kommer dit.

                                           GRAVITATIONEN

 

Gravitationen eller tyngdkraften påverkar alla föremål på
vår jord.
Det innebär att alla föremål med en massa dras mot jordens
medelpunkt.
Det gäller alltså även för ett flygplan.

Ett segelplan använder gravitationen som ”motor” för att få
framåtdriv. Denna motor kostar ju något, för vi vet ju alla,
att energi inte kan förstöras utan endast omvandlas och
det vi betalar i avgift för att komma framåt, är kinetisk energi
eller rörelseenergi.


I praktiken betyder det, att för att kunna flyga en segelmodell
eller annan modell utan egen framdrivning så betalar vi
med höjdförlust.

                                                MOTSTÅNDET

 

Motståndet har vi avhandlat tidigare, så här blir bara en
uppräkning av de viktigaste resultanterna:

Lyftkraftsmotståndet eller det inducerade motståndet.
Inducera=påverka, sätta igång.

Frontalmotståndet är det motstånd,  som de framifrån
projicerade  areorna orsakar vid färd framåt.

Ytmotståndet är det motstånd som uppstår på grund
av luftens viskositet vilket gör, att den vill klibba fast vid
alla ytor.

 

                                                                FRAMDRIVNINGEN

 

En vinge måste röra sig relativt omgivande   luft för att skapa lyftkraft.

Ett plan utan motor skapar framdrivning genom gravitationen.
(Flyger i ”nerförsbacke”.

En propeller DRAR planet framåt.

En jetmotor SKJUTER planet framåt.

 

Vi kan alla Newtons Lagar och därmed förstår vi sammanhanget: 

Mot varje kraft svarar en annan kraft lika stor i motsatt riktning.

                                    SLUTKLÄM:

 

En vinge är en effektiv maskin , som ändrar riktning på luften
och skapar lyft.

För att skapa lyft krävs cirkulation.

För att erhålla cirkulation måste du ha en vinge, luft med viss
viskositet, anfallsvinkel och hastighet.

Det är på den främre 40 % av vingens ovansida, som 65 % av
lyftet skapas.

Långa smala vingar är effektivare än korta tjocka.

Utan inducerat motstånd så har du ingen lyftkraft.

Inducerat motstånd kostar energi, som tas från hastigheten.

 

Hoppas detta gav dig en känsla vad lyftkraft är…

 

 

 

 

 

 

 

Kategorier
Segelflyg Väder och vind

TERMIK, ALLTSÅ EGENTLIGEN VAD ÄR DET ?

 

 

 

 

 

Flyga termik

 

 

 

 

 

 

 

 

 

Termik är en böjningsform av det latinska ordet för värme-termo.

 

Vi känner till begreppet termometer, som betyder värmemätare.
Suffixet -meter är ju också latin och betyder enkelt översatt mätare.
Andra exempel är ju voltmeter, amperemeter och så vidare.

Således, termik betecknar något, som har en högre
temperatur än omgivningen.

 Det är just det, som är grundförutsättningen för att termiska
vertikal rörelser eller konvektion, ska kunna uppträda.

 Konvektion är ju också ett latinskt ord, vars grundbetydelse
kan delas i två delar;

Kon, eller egentligen con, betyder med och vektion betyder
en riktad rörelse. Tänk på ordet vektor som ju är en riktad
kraft eller rörelse.

Ja,  vi ska inte bli för akademiska men dessa två begreppen
termik och konvektion hänger samman och är av
avgörande betydelse för oss som flyger och håller
oss uppe med hjälp av termiken och konvektionen.

 Denna lilla artikel är en allmänt hållen beskrivning utan
bilder och skisser, som på ett enkelt sätt vill beskriva, hur
, när och var termik uppstår.

 Som jag skrev förut, är en förutsättning för termik, att
vi har en skillnad i temperatur mellan olika luftmassor.

Hur uppstår denna skillnaden? När solen lyser på markens
yta tar denna upp eller absorberar värmestrålningen.
Värmet lagras i översta delen av marken. Beroende på
vilken typ av yta vi har, om det är grus, gräs, asfalt eller
sjö och hav, kommer värmet att lagras olika.

 Värmen som tillförs havet kommer i första hand att
påskynda avdunstningen av vattenånga och i andra
hand att värma vattnet.

 En grusplan som är mörk absorberar snabbare värmen
och kommer så småningom att fungera som ett element,
som strålar ut värme.

 När vår grusplan har strålat ut tillräcklig mycket värme
till den ovanpå liggande luftmassan, har temperaturen
i luftmassan stigit , så den skiljer sig från omgivande
luftmassor med kanske 3-5 grader.

När skillnaden är så stor, blir den uppvärmda luftmassan
labil, den vill stiga uppåt.

 Vad gör då att en bubbla med luft plötsligt lossar från
marken och stiger? Ja, det kan vara en vindpust, som
kommer och stöter till eller rubbar blåsan. Den kan
behöva lite starthjälp för att komma igång. Om vi har
svaga vindar, kan den marknära luftmassan glida över en
uppvärmd yta, värmen överförs som till största delen
strålningsvärme och liten del som kontaktvärme och
om då den över marken sakta glidande bubblan träffar
några hus, en trädridå eller ett annat hinder, får vi en
turbulent utlösning av termikblåsan. Det finns flera
andra sätt som en blåsa kan lossa på, men för våra
förhållanden är dessa två de viktigaste.

 Kom ihåg att vår blåsa befinner sig nu på väg uppåt
genom luft, som är relativt sett kallare än blåsan.

Termikblåsan är just när den lämnat marken lös i
konturerna och relativt svag.
Då blåsan stiger, kommer temperaturskillnaden
att öka, för vi vet,  att temperaturen i normalatmosfär
sjunker med ca 0.7-1.0 grader/100 meter.

Efter hand som blåsan stiger, får dess horisontella
utbredning fastare konturer och man kan, när man
cirklar i en blåsa märka, att stiget är bättre eller sämre,
beroende på, var man flyger.

Nu fortsätter ju inte en termikblåsa hur högt som
helst. När den når den nivå, då den stigande luftens
fuktighet kondenseras utmärks detta, genom att vi
kan se Cumulusmoln eller vackertvädersmoln bildas.
Det är det stora bulliga sommarmolnen, som växer
upp och faller ihop.

 På vilken höjd den stigande luftens fuktighet
kondenseras, beror på flera faktorer.
Det hänger på fuktighet, temperatur, omgivande
luft och hur labilt skiktat det är och om vi har inversion.

Normalt sett hos oss på västkusten ligger molnbasen med
Cumulusmoln under tidig sommar runt 1400 – 2500 meter.
Inne i landet, där vi inte har sjöbris, kan molnbasen
ligga avsevärt högre. Från min fullskalasegelflygtid
minns jag molnbaser i maj på 3000 meter i Västergötland.
I Utah USA kan du ha molnbaser på 20000 fot.

Om det råder något, som heter inversion,   på låt oss
säga 1200 meter, kan inte termiken komma högre.
Det vill säga luftmassan kan inte nå sin kondensationsnivå,
där det bildas moln av fuktigheten.

 En inversion är ett lager med luft,  där temperaturen
stiger med höjden i stället för att  avta med höjden.

 Om vi åker med vår termikblåsa glatt stigande med
3 m/sek, så märker vi, när vi närmar oss inversionsskiktet,
att stiget försvinner. Vi kommer inte högre, hur vi än gnetar.

När man flyger just i gränsskiktet mellan den vanliga
luften och inversionsskiktet,  känner man små turbulenta
stötar i flygplanet. När man termikflyger och blåsan inte
kondenserar och inte bildar moln, kallas det att man
flyger torrtermik.

 Torrtermiken kan vara lika stark som molntermiken,
men problemet är ju, man kan inte se var termiken finns!
Har du molntermik är det ju i princip bara att gå under
ett Cumulusmoln och stiga in i hissen. Att flyga torrtermik
är chansartat och man få i sådana fall lita på sin intuition
och erfarenhet av de lokala väderförhållandena.

 Nåväl, om vi har kurvat upp oss till molnbasen
med en modell eller fullskalakärra , så märker man
en välvning under molnet , där den stigande luften
går in i de flesta fall.

 Går man på rakkurs , efter att man nått basen,
kommer man att flyga in i sjunket.
Stiger du med 5 m/sek, så kommer du att sjunka
med i princip lika mycket, när du avlägsnar
dig från centrum. Det brukar man lösa, genom att
man ökar hastigheten markant, för att kunna ta sig
igenom sjunket så fort som möjligt.

 

En HyperAVA som svävar. Det är väl en bra karakteristik på modellen….

 

När du flyger en modell i en termikblåsa , som nyss släppt,
måste man vara beredd att korrigera,  så man ligger i centrum
av blåsan, för att utnyttja stiget på bästa sätt.

 Korrigeringen ska vara planlagd och genomföras utan
tvekan eller mjäkighet.

 Hur man korrigerar i en blåsa , kan man inte generellt
säga, för varje pilot har sin, som han tycker bästa metoden.
Flyger du din modell på 100 m höjd utan termik, brukar
jag trimma modellen till lägsta sjunkhastighet och flyga
den just på vikningsgränsen. Om jag flyger in i en blåsa
med vänster vinge, då händer  följande:

 Om vingen går in i stigande luft, kommer luften att
tvinga vingen uppåt och öka anfallsvinkeln. Flyger du
då just på vikningsgränsen, kommer din modell
att vika sig , eftersom anfallsvinkeln på den lyftande
vingen ökat av den stigande luften.

 Det är just det,  som är finessen. Modellen kommer
att vika sig in i termikblåsan. Man kan säga, att modellen
ramlar in i blåsan.

 När du stabiliserat din modell och flugit ett varv,
har du sett var lyftet finns och du kan korrigera, så du
centrerar din modell till det starkaste lyftet. Detta är ett
sätt att upptäcka termiken.

 Ligger du i en bra termikblåsa sommartid med din
modell, kommer du att bli förvånad, hur snabbt din
modell stiger. Att ha ett stig med 5 m/sek är inget
ovanligt. Det betyder, att du på en minut klättrat 300 meter!

 Har man en sådan stark blåsa, gäller det att ha en
planläggning eller strategi, hur du ska avbryta och när.

Om jag flyger en stor modell, 3.5-4.0 m spännvidd
brukar jag hänga med upp till x00 meter. Då är modellen
fortfarande sebar utan svårighet. En Blue Phoenix utan
bromsar tar jag aldrig högre än x50 meter.

 När du nått din högsta höjd, är det dags att ta sig ner.

 Det finns två sätt:

 Du kan flyga ner planet genom att hålla dig i luft,
som inte sjunker eller som bara stiger lite. Genom
att trycka upp farten,  kommer du att förlora din höjd
så småningom.

 Det andra och enklaste sättet är att aktivera de
aerodynamiska bromsarna
på modellen.
Bromsar är enkelt uttryckt en klaff, som exponeras
mot den förbiflygande luften och som dels bromsar
och dels genom turbulensbildning bakom klaffen
stör den laminära strömningen på ovansidan av vingen.
Så har du bromsar, så ut med de och ställ modellen
på nosen, så kommer du säkert ner.

 Ett tredje sätt, som jag använder till min Blue Phoenix
är att göra en störtspiral.
Det vill säga full sida och full höjd samtidigt. Detta gör
att du förlorar din höjd snabbt utan att överskrida
den hastighet vid vilken strukturella skador uppstår
på modellen. Man måste testa detta på lägre höjd,
så man ser,  att man inte flyger för fort.

 Med en bra modell är inte problemet att komma upp.
Problemet är att komma ner.
När termiken är kraftig och du drar all broms du har,
kan det hända, att du stiger i alla fall.

 Då måste du kombinera alla sätten du kan, för att
reducera höjden. Till exempel att använda full broms
och störtspiral. Då bruka man kunna komma ner säkert.

 Detta var lite om termikflygning. Den stora frågan
för en modellflygare är ju, hur man hittar termiken.

 Som jag skrev innan, är det ju inte stor mening att
leta termik över en vattenyta.

 Vi vet ju alla vad Laholmsbuktenväder är på sommaren.
Det är, när vi har en molnfri himmel över havet
, men inne över land, ca 8 km in från kusten har vi
de härligaste vackertvädersmolnen.

 Då är det bättre att leta efter termiken över åkrar,
grustag eller i lä av ett hinder, som kan lösa ut blåsan.
Vi har vissa reella bevis för termik.

 Om en blåsa släpper i närheten av fältet brukar man
märka att vinden markant minskar eller markant
växlar riktning
. Nästa steg kan vara, att man ser
svalorna kommer och jagar de insekter, som följer med
termiken uppåt. Svalor som jagar insekter, är en säker
indikation på termik. När svalorna flyger, kommer
strax därefter vitfågel
.

 Måsar och trutar går in i blåsan och kurvar upp sig.
rovfåglar är bra på att lokalisera termik och man kan
genom att studera dessa lära sig en hel del. Man kan
se,  hur de korrigerar i blåsan och framför allt om du
ser en ormvråk som lämnar en blåsa, då är det inte lönt
att gå dit och försöka.

 Har du en högvärdig modell och du kurvar i en blåsa
ihop med en ormvråk, så kommer du att stiga ifrån
den, om du flyger bra.

 Att konstatera,  att nu sticker blåsan,  är ett resultat
av synbara tecken , men framför allt ett resultat av
träning och erfarenhet.

 Ska du bli en duktig termikflygare , är det enda
som gäller att flyga mycket termik.

 Teknikens utveckling har givit oss fina instrument,
som underlättar för oss att flyga i termiken. Jag tänker
då på variometrar och höjdmätare.

 Dessa är ingen nödvändighet, för är du rutinerad,
flyger du lika bra termik med eller utan vario. Men
flyger du med vario kan du , när modellen är långt bort,
ta den minsta termikblåsa. Du kan ta en blåsa, där det
stiger med en dm/sek. Det gör du aldrig utan vario!

Dessutom ger instrumentering en extradimension
till ditt flygande. Speciellt om du flugit fullskalasegelflyg
tidigare uppskattas flyginstrument.

 Personligen har jag ett par stycken Picolario från
Thommys ModelBau i Tyskland. De har aldrig krånglat
och kan mycket mer, än vad du kan tänka dig använda
de till.

 Till min Blue Phoenix har jag en telemetriutrustning
från EagleTree i USA.
Det är mera som en instrumentbräda med de flesta
parametrarna inlagda inklusive en GPS:

 Men vem kan stå och titta på en instrumentbräda i
solsken när man har modellen på xxx meter?

Jag föredrar Picolarion. EagleTreeutrustningen har
turligtvis också audioinformation från varion.

 Termikflygning för människan upptäcktes  ganska sent.

 Det var på slutet av 20-talet vid tävlingarna på Wasserkuppe,
som piloterna vid flygningar mellan de olika hangen
ibland märkte ,  att de steg utan att ha anslutning till hangen.

 Man förstod då,  att det var en annan företeelse,  som lyfte
planet. Det var ju molntermiken.
Bara på ett par år slog den dynamiska flygningen igenom
och massor med nya segelflygrekord sattes. Innan detta
kom gick all skolning och alla tävlingar  på hang.

 Så  termikflygningen förde segelflygningen framåt med
jättekliv.

 Hangflygningen har ju fått en renässans tack vare
skärmflyget och hängflyget.

 Men för fullskalasegelflyget är numera hangflygning
helt överspelat.

 Ja, detta var en liten orientering om termik och
termikflygning med modell.
Hoppas det gett något till de, som inte vetat förut.

 Prova på med en enkel modell, du ångrar dig inte.
Det är inte enkelt, men varför ska allt var så lätt?

 Ni har säkert sett, när jag flyger eller när någon annan
flyger termik. Visst är det rogivande. Man kan sitta och
njuta åt sitt eget flygande på ett avslappnat sätt.
Men ändå är man alert för att reagera på förändringar
i väder eller på modell. Att flyga termik med en välflygande
segelmodell är en av de grenar av modellflyget jag
finner mest meningsfyllt.

Varje gång jag går ut för att termikflyga har jag alltid
ett mål med min flygning. Det kan vara vad som helst,
till exempel prova olika tyngdpunkter, olika utslag eller
vad som helst som hör till flygningen.

Jag går aldrig ut och flyger förutsättningslöst. Det enda
sättet att öka sin  skicklighet är att träna planmässigt.

 

Tro mig! För jag har mer än 500 timmar på mina Avor
(jag för loggbok över all min flygning)
och jag upptäcker nya saker varje gång jag är ute och flyger!

 

 

 

 

 

Kategorier
Flyghistoria Nostalgoteket

WEIHE, ETT VACKERT SEGELPLAN FRÅN 30-TALET

 

 

 

 

 

 

 

Weihe

 

 

 

 

 

 

 

 

SONY DSC

 

 

 

Ett av mina favoritplan, när det gäller vintageplan ,
är det tyska Weihe, vilket konstruerades på 30-talet
av
Hans Jacobs , som arbetade vid DFS,
Deutsches Forschungsinstitut für Segelflug.

Planet hade en flugen polar av 1:29 och planet deltog
med framgång i segelflygtävlingar ända fram till 60-talet.
Weihe hade som ett av de första segelplanen en vattentank
med 40 liter, som användes för att helt enkelt tynga planet,
så man kunde öka hastigheten mera mellan blåsorna,
när termiken var stark. Längre fram på dagen när termiken
blev svagare tömde man efterhand ur tanken, för att
effektivt kunna använda planets prestanda.

Weihe tillverkades på licens i Sverige under kriget och tilldelades
de många flygflottiljerna , som fanns då. På slutet av 50-talet
utmönstrade Flygvapnet Weihe och tilldelade de civila
flygklubbarna planen.

Ni kan läsa om AB Flygindustri i Halmstad som tillverkade
Weihe. Jag har skrivit 8-9 poster om företaget med unikt
fotomaterial.

Ni hittar det här.

De svenska Weiheplanen  utdömdes i samband med då N.N
drog vingarna av en kärra i moln. (Okontrollerbart läge?)
Haveriutredningen fann att kaseinlimmet var föråldrat,
varvid konstruktionen kunde bryta samman.

Så med ett pennstreck gick nästan hela den svenska
segelplansflottan
i Sverige i graven, vilket dock hade det goda
med sig,
att vi fick den förnyad, delvis med hjälp av statliga pengar,
men kanske mest tack vare Lennart Ståhlfors, som var en
mycket dynamisk människa.

Vill ni läsa mer om Weihe, kan ni gå till
denna länk, eller här, eller här .

 

Liten fotnot, eller lite onödigt vetande:

För 40 år sedan fanns på svensk tv ett program varje söndagskväll,
som gick tror jag 2115 -2155, vilket hette ”SportSpegeln”.

I ingressen till programmet kördes en liten trailer, som
beskrev olika sporter.

I den ingressen ingick en 5 sekunders snutt,  med en 
mot fotografen landande Weihe segelkärra.

Jag drömde var gång jag såg de 5 sekunderna, att sådant
plan ska jag flyga, när jag blir stor…

Konstigt man kan erinra sig ett 5 sekunders ögonblick eller ?

 

 

En Weihe vid mästerskapen på Wasserkuppe 1939.

Fullskärmsinfångning 2016-07-20 081930

 

Fullskärmsinfångning 2016-07-20 082012

 Ovanstående bilder från Wikipedia.

En modell av Weihe, 6 m spännvidd.

Treplansritning, färgmärkning av en av våra svensktillverkade Weihar.

Denna Weihe tillverkades i Sverige och hänger nu på Flygvapenmuseum Malmslätt.

Weihen på museet Ålleberg.

Fenan Ållebergs Weihe.

Nosen på Weihen Ållebergmuseet.

19-_DSC4123

 En Weihevinge under tillverkning vid AB Flygindustri Halmstad 1943.
 Copyright bild: Kurt Persson

 

 

Kategorier
Hangflyg modell

MODELLHANGFLYG

 

 

Stora modeller

 

 

 

 

 

 

segel29

 

Jag har ju alltid varit svag för stora segelmodeller av olika orsaker.
Därför kan jag inte undanhålla er några bilder på snygga modeller, både hang och termik.

Vad som är intressant är att man i England har en förkärlek för att bygga
skalamodeller av motorkärror och flyger på hang med. Det finns några exempel nedan.

 

 

segel28En F3B-modell, alltså avsedd för termik startar på hanget.

segel27En C-130 Hercules visslar förbi. 3 m spännvidd vikt 5 kg. 

segel26En normalstor termikkärra startar på hanget. Spännvidd 4 meter.

segel24Den här bilden tog jag med för den beskriver spänningen vid en provflygning
av en stor  modell. Flygplanet är en, tror jag, Phoebus C, som jag flugit
fullskalamodellen av. Tyvärr svartvitt , men det får duga.
Flygning i alpområdet alltid spännande upplevelse på grund av det ombytliga
vädret. Antingen eller….

segel22 

Flygbogsering i Schweiz. Detta är det vanliga sättet att få upp modellen, när de är så stora.

 

 

Kategorier
Flyghistoria Modellflyg teknik

VAD ÄR EN STJÄRNMOTOR ELLER EN RADIALMOTOR OCH HUR FUNGERAR DEN?

 

 

 

 

En stjärnmotor är en motor

med ojämnt antal cylindrar

och en vevstake…

 

 

 

 

 

 

 

Radial_engine

De första pionjärerna använde stjärmotorer.
Till exempel Bleriot, som flög över Engelska Kanalen
med sitt flygplan.
En stjärnmotor har vissa fördelar. Den är luftkyld
och den är mekaniskt ganska enkelt uppbyggd.

Under första världskriget hade man ofta stjärnmotorn
roterande, alltså propellern satt fast monterad i
motorn medan vevaxeln satt fast i planet enkelt
uttryckt.
Detta för att få bättre kylning.
På köpet fick man en icke önskvärd gyroskopisk
effekt, som gjorde att planet i vissa lägen blev
mindre manövrerbart.

Den är således ganska lätt att tillverka. Under andra
världskriget användes stjärnmotorn främst i  bombplan
och vissa jakt- och attackplan.

Exempel på bombplan är ju B-17 Flying Fortress
och exempel på jaktplan FW-190 A-8.

En stjärnmotor har den fördelen, den kräver ingen
kylare med allt det innebär av pumpar, kylarvätska
och radiator, vilket ger vikt och skadligt motstånd.

Förresten, varför tror du man har glykol i en
flygmotor som är vätskekyld ??

För att kylvätskan inte ska frysa?? Förvisso.
Men huvudorsaken är en helt annan.

Man har kylvätska som är tillsatt med ett medel,
som tar bort ytspänning och därmed eliminerande
det som kallas ”Sideneffekten” i en motor.

Flygmotorer är för viktens skull byggda så lätta
som möjligt och är följaktligen tunnväggade.

I och med detta överförs värme snabbt. För att
avleda värmen har man en kylvätska som har
egenskapen att den förhindrar bildningen av
luftbubblor på mantelytorna.

Om man inte haft tillsatser i kylvätskan, skulle
bubbelbildningen förhindrat kylningen.
Du vet,  att luft är en av de bästa isolatorerna.

Vill du se sideneffekten så koka vatten i en gryta.
Då kommer du se hur luftbubblor bildas i botten.
Precis samma sak händer i en flygmotor.

Varför tror du man har glykol eller liknande tillsats i
kylvätskan på en Formula1 motor ?

En stjärnmotor har alltid (med något undantag
inom motorcykelbranschen) ojämnt antal cylindrar.
Till exempel 3-5-7-9 cylindrar. Om man lägger
två 9-cylindriga motorer på varandra får man en
dubbelstjärna på 18 cylindrar.

Man byggde upp till quadruppelmotorer, alltså med
4 rader efter varandra.

Den största stjärnmotor man byggt hade 4 x 9 cylindrar
och producerade nästan 10000 hk!
Tänk att byta tändstift på en sån motor!
72 stift att byta och ställa in…..

Att bygga dessa stora motorer var så gott som
meningslöst, då man inte kunde överföra kraften
till hastighet på grund av tekniska och fysiska
begränsningar med propellern.

Som ni ser på bilden,  har man i en stjärnmotor
en vevaxel. På denna vevaxel är huvudvevstaken fäst.
De andra vevstakarna kallas hjälpvevstakar och är
i sin tur fästade på huvudvevstaken.  Detta är en
lösning, som jag tycker är ganska genial.

Tändningsföljden för en stjärnmotor är
”efter hand med överhopp ”, dvs cylindrarna tänder
efter varandra i  följden: 1-3-5-7-2-4-6, när det
gäller exempelvis en 7-cylindrig stjärna.

Alltså en 9-cylindrig radialmotors tändföljd är:
1-3-5-7-9-2-4-6-8-1-3-osv.

Man hoppar över en cylinder  hela tiden.

Kamaxeln sitter i vevhuset runt om som en
vågformad ring.  Kammarna bestämmer ventilernas
öppnings- och stängningstider via stötstänger till
vipparmar och ventiler.

Det är en enkel mekanisk lösning. Står du jämte
en stjärnmotor, som går på tomgång , kan du
höra hur cylindrarna tänder runt om i följd enligt
angivet tändföljdsschema .

Effekten på en stjärnmotor var lika hög som på
en radmotor.
Det som var negativt var att den hade stor frontal
yta, vilket ökade luftmotståndet och gjorde den
känslig för beskjutning.

En av de bästa stjärnmotorerna var en Bristol Centaurus,
som producerade, när den gick på alla cylindrarna nästan
3000 hästkrafter. Denna motorn satt i Hawker SeaFury.

Ett år när jag besökte Farnborough och den stora
flyguppvisningen, fanns där en Hawker SeaFury,
som deltog. Piloten flög, så det skrek i däcken.

Dagen efter träffade jag piloten vid hans SeaFury
på Duxford , där planet var stationerat

Jag frågade piloten, som var en 65-årig herre,
hur mycket han tog ut ur planet, när han flög
på en uppvisning.

Han svarade,  att han tog ut allt.
Dock påpekade han,  att motorn gick bara på
16-17 cylindrar, när han flög på Farnborough. 

Detta  hade dock inte avgörande betydelse för
prestandan på planet och att motorn inte gick
på alla cylindrarna var inget ovanligt utan snarare
regel enligt piloten.

Samma problem har man på vår svenska B17 lätta
bombplan utrustad med en  Pratt & Whitney
Twin Wasp, som är samma motor som sitter i Dc-3.
Här förresten en länk till hemsidan för vår B-17:

http://b17blajohan.wordpress.com/flygplanet/

Man kunde öka effekten på sina motorer genom
metanol vatteninsprutning, genom att kyla
insugningsluften och genom avgaskompressorer.

Tyskland hade problem att producera bränsle med
högt oktantantal. I slutet av kriget använde de
allierade bränslet Aviationgas 93-108 oktan.

Tyskarna hade bara bränsle, producerat genom
att extrahera och torrdestillera brunkol, som höll
max ca 87 oktan.

För att kompensera för lågt oktantal tillsatte
tyskarna metanol, vatten och hydroxider för att
kunna använda motorns hela kapacitet.
Vilket man lyckades väl med.

 

300px-Bristol_centaurus_arp_750pixBristol Centaurus

 

En annan av stjärnmotorerna som var bra var BMW:s A-8motor,
som satt i FW-190. En dubbelstjärna på 1400-1800 hk beroende på versionen.
 

bmwmotormuseum

                                                                      BMW:s dubbelstjärna med 14 cylindrar, som finns på BMW:s motormuseum i Muenchen.

Denna motorn står på flygmuseet i Laatzen, som finns på mässområdet
söder om Hannover längs BundesAutoBahn 7. Då man ser denna fina
motor får man en viss förståelse för dels den avancerade funktionen,
dels vilket utsökt mekaniskt arbete det är och hur många mantimmar
det krävdes att bygga den invecklade maskin.

                                                                            Tillverkarens skylt på en av manifolden. Är det Arado-fabriken  som tillverkat…

Du ser att bultar, muttrar är lika moderna som de som idag används,
så inget nytt under  solen.

                                    Baksidan på motorn med olika hjälpaggregat.

Hur mycket arbete krävs för att svetsa ihop avgasmanifolden ?

                                                            14 cylindrig dubbelstjärna
                                                 Huvudvevstake med hjälpvevstakar.

Här kan man förstå vevstaksinfästningarna på vevaxeln.

Denna skulle jag vilja ha stående i vardagsrummet.

Radial_engine_timing-small

 

 

 

 

 

 

 

 

 

 

 

Princip för en ROTERANDE stjärnmotor.

 

 

 

 

 

 

 

 

 

Kategorier
Väder och vind

DAN FÖRE DAN FÖRE DEPPAREDAGEN…

…är det, när vädret är,  som det är nu.

 

 

 

Man kan inte flyga modeller och man kan inte flyga skärm.
Det enda som flyger är ju fingrarna över tangentbordet till datorn.

Det skriker i alla flygtarmarna,  men antingen blåser det för mycket
för ”vanligt” modellflyg,  eller så blåser det från fel håll för modell-
eller skärmflyg på hang.

Normalt sett har vi vid denna årstiden på Västkusten mycket nord-
och nordvästliga vindar. De har dock liksom solen, lyst med sin
frånvaro. Varför ?

Tja, det är en 10000kronorsfråga. Jetströmmarna,
(se under kategorin Väder  och vind) har ju inte legat där vi flygare
vill, därför har lågtrycksbanorna gått där det gett oss mycket ostliga
och sydliga vindar.

Inga modeller ligger på byggbrädan, så man kan inte bygga nytt.
Det kan jag bara skylla på lathet! Jag vill gärna bygga en ”Riktig”
byggsats av en Tiger Moth, men jag säger som Oscar I: Jag gör det sen.

Har man inget byggprojekt och inget som behöver repareras eller
byggas om, brukar jag , för att inte glömma hur min modellflygfabri
k ser ut,  att gå ut och ladda upp eller ur lite ackar……eller sortera
skruvar i diverseburken.

Att flyga inomhus är jag fullständigt ointresserad av,
vilket gör att jag tar alla möjligheter att flyga ute.

Då blir det som det blir.

Inte ens den minsta simulator är installerad på min dator.
Men blir jag riktigt desperat tror jag jag ska installera ”Stormovik”,
min i mitt tycke bästa simulatorn.

Jag såg en intervjuv på tysk tv med ett  av de tyska flygarässen,
Guenter Rall, som har skjutit ner 275 fiender med sin Me109 D.
Han föredrog denna versionen och flög aldrig Focke Wulf i strid.
Rall sa att denna simulator, som han provfluget, var det närmaste
riktig flygning man kan komma.

Guenter Rall avled för en kort tid sedan i sitt hem läste jag just.

Länk till en intervjuv med Guenter Rall:

http://www.sueddeutsche.de/politik/436/464040/text/

Kan man inte flyga i någon form, får man väl plocka fram ett Meccano….?

Det är hårt att vara flygare.

 

 

 

 

Kategorier
Termikflyg

SOMMAR-SOL-TERMIKFLYGNING

Hur gör man det…egentligen?

 

 

 

 

 

 

 

 

 

Det är väl något att läsa om nu när det är minus 12 grader ute…..

 

Termik är en böjningsform av det latinska ordet för värme-termo.
Vi känner till begreppet termometer, som betyder värmemätare.
Suffixet -meter är ju också latin och betyder enkelt översatt mätare.
Andra exempel är ju voltmeter, amperemeter och så vidare.

Således, termik betecknar något som har en högre temperatur
än omgivningen. Det är just det, som är grundförutsättningen
för att termiska vertikal rörelser eller konvektion, ska kunna
uppträda.

Konvektion är ju också ett latinskt ord vars grundbetydelse
kan delas i två delar; Kon, eller egentligen con, betyder med
och vektion betyder en riktad rörelse. Tänk på ordet vektor
som ju är en riktad kraft eller rörelse. 

Alltså, konvektion är enkelt uttryckt en rörelse i en vätska
eller i en gas.

Ja, vi ska inte bli för akademiska, men dessa två begreppen
, termik och konvektion hänger samman och är av avgörande
betydelse för oss, som flyger och håller oss uppe med hjälp
av termiken och konvektionen.

 

Denna lilla artikel är en allmänt hållen beskrivning, utan
bilder och skisser, som på ett enkelt sätt vill beskriva hur,
när och var termik uppstår.

 

Som jag skrev innan, är en förutsättning för termik,
att vi har en skillnad i temperatur mellan olika luftmassor.

Hur uppstår denna skillnaden?

När solen lyser på markens yta, tar denna upp eller absorberar
värmestrålningen. Värmet lagras i översta delen av marken.
Beroende på vilken typ av yta vi har, om det är grus, gräs,
asfalt eller sjö och hav, kommer värmet att lagras olika.

Värmen som tillförs havet kommer i första hand att påskynda
avdunstningen av vattenånga och i andra hand att värma vattnet.
En grusplan som är mörk absorberar snabbare värmen och
kommer så småningom att fungera som ett element som strålar
ut värme. När vår grusplan har strålat ut tillräcklig mycket
värme till den ovanpå liggande luftmassan, har temperaturen
i luftmassan stigit så den skiljer sig från omgivande luftmassor
med kanske 3-5 grader.

När skillnaden är så stor, blir den uppvärmda luftmassan labil
, den vill stiga uppåt.

Vad gör då, att en bubbla med luft plötsligt lossar från marken
och stiger? Ja, det kan vara en vindpust,  som kommer och stöter
till eller rubbar blåsan. Den kan behöva lite starthjälp för att
komma igång.

Om vi har svaga vindar, kan den marknära luftmassan glida
över en uppvärmd yta, värmen överförs som till största delen
strålningsvärme och liten del som kontaktvärme och om då
den över marken sakta glidande bubblan träffar några hus,
en trädridå eller ett annat hinder får vi en turbulent utlösning
av termikblåsan.

Det finns flera andra sätt, som en blåsa kan lossa på, men fö
r våra förhållanden är dessa två de viktigaste.

Kom ihåg att vår blåsa befinner sig nu på väg uppåt genom luft,
som är relativt sett kallare än blåsan. Termikblåsan är just när
den lämnat marken lös i konturerna och relativt svag.

Efter hand som blåsan stiger, kommer temperaturskillnaden
att öka, för vi vet att temperaturen i normalatmosfär sjunker
med ca 0.7-1.0 grader/100 meter. Efter hand som blåsan
stiger får dess horisontella utbredning fastare konturer och
man kan, när man cirklar i en blåsa märka, att stiget är bättre
eller sämre, beroende på var man flyger.

Nu fortsätter ju inte en termikblåsa hur högt som helst.
När den når den nivå, då den stigande luftens fuktighet
kondenseras, utmärks detta,  genom att vi kan se Cumulusmoln
eller vackertvädersmoln bildas. Det är det stora bulliga
sommarmolnen som växer upp och faller ihop.

På vilken höjd den stigande luftens fuktighet kondenseras,
beror på flera faktorer. Det hänger på fuktighet, temperatur,
omgivande luft och hur labilt skiktat det är och om vi har
inversion. Normalt sett hos oss på västkusten ligger molnbasen
med Cumulusmoln under tidig sommar runtt 1400 – 2500 meter.
Inne i landet, där vi inte har sjöbris kan molnbasen ligga avsevärt
högre. Från min fullskalasegelflygtid minns jag molnbaser i maj
på 3000 meter i Västergötland.

Om det råder något, som heter inversion på låt oss säga 1200 meter,
kan inte termiken komma högre. Det vill säga luftmassan kan
inte nå sin kondensationsnivå där det bildas moln av fuktigheten.

En inversion är ett lager med luft där temperaturen stiger med
höjden i stället för avtar med höjden. Om vi åker med vår
termikblåsa glatt stigande med 3 m/sek, så märker vi, när vi
närmar oss inversionsskiktet att stiget försvinner. Vi kommer
inte högre hur vi än gnetar.

När man flyger just i gränsskiktet mellan den vanliga luften
och inversionsskiktet,  känner man små turbulenta stötar i
flygplanet.

När man termikflyger och blåsan inte kondenserar och inte
bildar moln kallas det att man flyger torrtermik. När du flyger
i termik som bildar moln, kallas det molntermik.

Torrtermiken kan vara lika stark som molntermiken, men
problemet är ju, man kan inte se var termiken finns! Har du
molntermik är det ju i princip bara att gå under ett Cumulusmoln
och stiga in i hissen.

 Att flyga torrtermik är chansartat och man få i sådana fall lita
på sin ”näsa för termik”och erfarenhet av de lokal väderförhållandena.

Nåväl, om vi har kurvat upp oss till molnbasen med en modell eller
fullskalakärra ,så märker man en välvning under molnet där den
stigande luften går in i de flesta fall.

Går man på rakkurs efter att man nått basen, kommer man att
flyga in i sjunket. Stiger du med 5 m/sek,  så kommer du att
sjunka med i princip lika mycket när du avlägsnar dig från
centrum. Det brukar man lösa,  genom att man ökar hastigheten
markant, för att kunna ta sig igenom sjunket så fort som möjligt.

När du flyger en modell i en termikblåsa,  som nyss släppt,
måste man vara beredd att korrigera så man ligger i centrum
av blåsan, för att utnyttja stiget på bästa sätt.

 Korrigeringen ska vara planlagd och genomföras utan tvekan
eller mjäkighet.

Hur man korrigerar i en blåsa,  kan man inte generellt säga,
för varje pilot har sin, som han tycker bästa metoden.

Flyger du din modell på 200 m höjd utan termik,  brukar jag
trimma modellen till lägsta sjunkhastighet och flyga den just
på vikningsgränsen.

 Om jag flyger in i en blåsa med vänster vinge, händer då följande:

Om vingen går in i stigande luft, kommer luften att föra vingen
uppåt och öka anfallsvinkeln. Flyger du då just på vikningsgränsen,
kommer din modell att vika sig eftersom anfallsvinkeln på den
lyftande vingen ökat av den stigande luften. Det är just det som
är finessen. Modellen kommer att vika sig in i termikblåsan.

Man kan säga att modellen ramlar in i blåsan.

När du stabiliserat din modell och flugit ett varv, har du sett
var lyftet finns och du kan korrigera, så du centrerar din modell
till det starkaste lyftet.

Detta är ett sätt att upptäcka termikens utbredning.

Ligger du i en bra termikblåsa sommartid med din modell,
kommer du att bli förvånad, hur snabbt din modell stiger.
Att ha ett stig med 5 m/sek är inget ovanligt. Det betyder ata
du på en minut klättrat 300 meter!

Har man en sådan stark blåsa, gäller det att ha en planläggning
eller strategi, hur du ska avbryta och när.

Om jag flyger en stor modell, 3.5-4.0 m spännvidd,  brukar
jag hänga med upp till xxxx meter. Då är modellen fortfarande
sebar utan svårighet. En Blue Phoenix utan bromsar tar jag
aldrig högre än yyy meter.

När du nått din högsta höjd ,är det dags att ta sig ner.
Det finns två sätt:

Du kan flyga ner planet genom att hålla dig i luft som inte
sjunker eller som bara stiger lite. Genom att trycka upp
farten kommer du att förlora din höjd så småningom.

Det andra och enklaste sättet är att aktivera de aerodynamiska
bromsarna på modellen. Bromsar är enkelt uttryckt en klaff
som exponeras mot den förbiflygande luften och som dels
bromsar och dels genom turbulensbildning bakom klaffen
stör den laminära strömningen på ovansidan av vingen.

Så har du bromsar så ut med de och ställ modellen på nosen,
så kommer du säkert ner.

Ett tredje sätt, som jag använder till min Blue Phoenix är
att göra en störtspiral. Det vill säga full sida och full höjd samtidigt.

Detta gör, att du förlorar din höjd snabbt utan att överskrida
den hastighet, vid vilken strukturella skador uppstår på modellen.
Man måste testa detta på lägre höjd, så man ser att, man inte
flyger för fort.

Med en bra modell är inte problemet att komma upp.
Problemet är att komma ner.

När termiken är kraftig och du drar all broms du har,  kan de
t hända, att du stiger i alla fall. Då måste du kombinera alla
sätten du kan för att reducera höjden. Till exempel att använda
full broms och störtspiral. Då bruka man kunna komma ner säkert.

Drabbas inte av panik!

Vilket är lätt att säga, om ens modell försvinner och dyker upp,
om vartannat och den flyger så fort , så pinnarna yr om den.

Be om hjälp från någon,  som står jämte, som kan hjälpa
till att hålla ögonen på modellen.

Om allt går åt pipan, det vill säga,  du förlorar modellen
ur sikte,  finns det en sak att göra:

Om du har bromsar så ut med de. Detta kombinerat med
full höj och full sida bör få ner modellen i inte alltför hög
hastighet.

Att dra full höjd och full sida ska du prova under kontrollerade
former, så du vet,  hur modellen beter sig. Du kanske inte ska
ge så mycket sidoroder i en störtspiral för att få ner den med
så låg hastighet som möjligt. Men som sagt: Testa

Detta var lite om termikflygning. Den stora frågan för en
modellflygare är ju, hur man hittar termiken.

Som jag skrev innan, är det ju inte stor mening att leta
termik över en vattenyta. Vi vet ju alla , vad Laholmsbuktenväder
är på sommaren. Det är,  när vi har en molnfri himmel över havet,
men inne över land, ca 8 km in från kusten,  har vi de härligaste
vackertvädersmolnen.  Fenomenet beror på det vi drabbas av
vid kusten:

Sjöbrisen som suger in kall luft från havet för att ersätta den
stigande luften inne över land. I och med det hela tiden pumpar
in kall luft, hinner den inte värmas så den vill stiga och därmed
är det finito med termiken.

Då är det bättre att leta efter termiken över åkrar, grustag eller
i lä av ett hinder, som kan lösa ut blåsan.

Vi har vissa reella bevis för termik. Om en blåsa släpper i
närheten av fältet,  brukar man märka, att vinden markant
minskar eller markant växlar riktning.

Nästa steg kan vara,  att man ser svalorna kommer och jagar
de insekter,  som följer med termiken uppåt. Svalor som
jagar insekter är en säker indikation på termik.

När svalorna flyger,  kommer strax därefter vitfågel.
Måsar och trutar går in i blåsan och kurvar upp sig.

Rovfåglar är bra på att lokalisera termik och man kan
genom att studera dessa, lära sig en hel del. Man kan se,
hur de korrigerar i blåsan och framför allt, ser man en ormvråk,
som lämnar en blåsa, då är det inte lönt att gå dit och försöka.

Har du en högvärdig modell och du kurvar i en blåsa ihop
med en ormvråk, så kommer du att stiga ifrån fågeln
, om du flyger bra.

Att kunna konstatera, att nu släpper blåsan från marken är
ett resultat av synbara tecken men framför allt ett resultat
av träning och erfarenhet.

Ska du bli en duktig termikflygare är det enda som gäller
att flyga mycket termik.

Teknikens utveckling har givit oss fina instrument
, som underlättar för oss att flyga i termiken.

Jag tänker då på variometrar och höjdmätare. Dessa är
ingen nödvändighet,  för är du rutinerad,  flyger du lika
bra termik med eller utan vario.

Men flyger du med vario,  kan du när modellen är lång
bort ta den minsta termikblåsa.

Du kan ta en blåsa , där det stiger med en dm/sek. Det gör
du aldrig utan vario! Dessutom ger instrumentering en
extradimension till ditt flygande. Speciellt om du flugit
fullskalasegelflyg tidigare uppskattas flyginstrument.

Personligen har jag ett par stycken Picolario från
Thommys ModelBau i Tyskland. De har aldrig krånglat
och kan mycket mer,  än vad du kan tänka dig använda de till.

Till min Blue Phoenix har jag en telemetriutrustning från
EagleTree i USA. Det är mera som en instrumentbräda,
med de flesta parametrarna inlagda,  inklusive en GPS:

Men vem kan stå och titta på en instrumentbräda i solsken,
när man har modellen på 400 meter?

Jag föredrar Picolarion. EagleTreeutrustningen har
naturligtvis också audioinformation från varion.

 Termikflygning som en företeelse för den flygande människan
upptäckte ganska sent. Det var på slutet av 20-talet vid
tävlingarna på Wassekuppe, som piloterna vid flygningar
mellan de olika hangen ibland märkte,  att de steg utan att
ha anslutning till hangen. Man förstod då, att det var en
annan företeelse ,  som lyfte planet.

Det var ju molntermiken.

Bara på ett par år slog den dynamiska flygningen igenom
och massor med nya segelflygrekord sattes.

Innan detta kom,  gick all skolning och tävling på hang.
Så termikflygningen förde segelflygningen framåt med jättekliv.

Hangflygningen har ju fått en renässans,  tack vare skärmflyge
t och hängflyget. Men för fullskalasegelflyget är numera
hangflygning helt överspelat.

Ja, detta var en liten orientering om termik och termikflygning
med modell.

Hoppas det gett något till de,  som inte vetat förut.

 Prova på med en enkel modell, du ångrar dig inte.

 Det är inte enkelt, men varför ska allt var så lätt?

 

 

 

 

Kategorier
Flyghistoria Nostalgoteket Old Timer flyg

OCH NU BLIR DET KULTUR…

 

 

Har du läst historien om ”Lille Prinsen” ?

 

 

 

men bli inte rädda för det utan fortsätt läsa.

Jag tänkte tala väl för en fransk författare, som heter något för en svensk lite outtalbart:

Antoine de Saint Exupéry. Försök till fonetiskt uttal: (antoan-dö-säng-exyperi)

Han var en fransman ,född 1900, som förutom att vara en framstående stilist också var
en pionjär inom flyget.

På tjugotalet inledde han sin karriär som postflygare och hamnade så småningom i Nordafrika,
där han såg till att posten kom till de platser den skulle.

Förhållandena på den tiden, 30-, 40-talet var ju inte lätta för en pilot i öknen.
Planen var inte pålitliga och tänk på navigationen…..man fick flyga efter kompass och död
räkning utan att veta mer om vindarna på höjd än vad man kunde gissa.
Vindarna kunde ju driva ett plan avsevärt ur kurs och då hitta en liten strip att landa på,
så man fick planet tankat för nästa hopp var ju svårt. Om man var så att säga helt borta
med vinden, fick man landa och göra som på havet. Man fick ta några solhöjder med
sextant och räkna ut sin position för att kunna lägga ut en ny kurslinje.

200px-11exupery-inline1-500Det var plan som ovanstående, i bästa fall, han flög.

Saint-Exupèry skrev en av sina bästa böcker vid denna tiden och den heter Natt Flyg.
Kan vara svår att få tag i , men går att beställa via nätet. Den beskriver pilotens liv på 30-talet
på ett bra sätt och boken har ett högt litterärt värde.

Flygningarna kantades av krascher och äventyr naturligt nog, men Antoine klarade
sig hyfsat, till skillnad mot flera kollegor, som låg utströdda i öknen med sina plan.

Den bok som gjort författaren mest känd, är Lille Prinsen.

Lille Prinsen skrevs som en barnbok och är såld i 8 miljoner exemplar.
Den beskriver världen ur ett barns perspektiv, men det är egentligen en allegori,
så boken är lika givande för vuxna. Boken rekommenderas varmt och den finns i
bokhandeln, eller om man är skrupelfri, så drar man ner den som ljudbok på någon torrentsida.

När kriget bröt ut, flydde Antoine till USA, där han med alla medel försökte komma med
i aktiv flygtjänst i kampen mot Hitlers välde. Men myndigheterna tyckte han var för gammal.
När man hör det tänker jag på Chuck Yaeger, som flög F-15 tills han var 81 år gammal och
som 86-åring fortfarande flyger jet och sin P-51 Mustang.

Nåväl, efter lång kamp med byråkratin, blev han pilot i de fria franska flygvapnet,
som följde med vid invasionen av Europa 1944.

Antoine placerades på en spaningsflottilj som flög P-38 Lightning, vilket ju var en
2-motorig jakt/attack och spaningskärra.

antoine-de-saint-exupery-1

Antoine i sin P-38 Lightning

 

Han försvann efter ett fotouppdrag, då han skulle plåta hamnar i södra Frankrike vid medelhavskusten.

 

270px-Gourmette_de_Saint_Exupery

Inget hördes av honom, förrän man i slutet av 1998 fick ett upphittat ett armband
av en fiskare, som hittat det i sitt nät utanför Marseille.

2003 drogs en eftersökning igång och delar av planet hittades. Man kunde konstatera ,
att detta var den Lightning, som Saint-Exupèry hade flugit.

Man kunde inte konstatera ,varför han kraschat i havet, men i samband med att man
visade en dokumentär på tysk tv om händelsen, som jag såg, steg en tysk fd pilot fram
och sa att han skjutit ner planet.

Saint-Exupèrys plan var ju obeväpnat och det måste ha varit ganska enkelt för en erfaren
tysk pilot att skjuta ner fransmannen. Detta påståendet motsägs av de filmer av allierad
radar och upptagningar av radiotrafiken som fortfarande finns, så full klarhet går väl
knappast att få.

Kroppen fanns inte i planet, men vid tiden för nerskjutningen hade befolkningen funni
t en illa tilltygad kropp på stranden 80 km från nedslagsplatsen, som man begravt.
Man håller för troligt att detta var Saint-Exupèry.

Vill ni veta mera så googla på hans namn.

Det finns en officiell hemsida för författaren och piloten:

http://www.antoinedesaintexupery.com/

 

 

Kategorier
Segelflyg

BLUE PHOENIX,

 …en modell både för nybörjaren och den rutinerade.

 

 

 

 

 

 

PICT0839

 

 

 

 

 

Den för nybörjaren bästa modellen när det gäller segel är enligt
min uppfattning Blue Phoenix.

Modellen är en svensk konstruktion som säljs över hela världen.
Den har utomordentligt goda egenskaper.  Den är lätt att bygga,
den flyger bra, den är lätt att laga och den erbjuder för den erfarne
flygaren möjligheter till finsnickerier i flygningen.

Jag rekommenderar den varmt. Priset för byggsatsen ca 600 kronor.

Var man köper den? Googla.

Ja det är en byggsats, det är ingen stor kartong som kommer där
allt är färdigt, utan man får faktiskt sätta sig ner  och bygga den själv
. Det är lärorikt, för man lär sig hur en basmodell är konstruerad för
det ska bli starkt och lätt. Man bygger den enligt instruktionen.

Modellen är ju avsedd för att dras upp med lina, men i dagens läge
sätter man i en liten elmotor och ca 1500 mA LiPo. Då kommer du
upp i termiken bekymmersfritt.

En annan sak du kan ändra, är vingfastsättningen. Den är på ritningen
opraktisk, så jag ändrade om till konventionell fastsättning med två
rundstavar och gummibanden tvärs.

Hur lång tid den tar att bygga? Du gör det på en vecka, så sätt igång
och många sköna flygningar under avslappnade förhållanden väntar dig.

Du behöver inte stå eller sitta spänd som en stålfjäder för denna modellen
flyger bra nästan av sig själv!

Här några bilder på min Blue Phoenix:

 

 

IMG_0002Här är lådan modellen kommer i. 

IMG_0012

Spryglarna modifierade jag på så sätt att jag tunnade
profilen 2 mm på högsta punkten, för att modellen
skulle penetrera bättre i motvind. Denna ändring gjorde
inte bara på modellens förmåga att gå mot vinden,
glidtalet förbättrades också avsevärt.

 

IMG_0020

Vingen byggs på vanligt sätt: Byggbräda,
ritning och Gladpack. Sen kör man på med CA-lim.

IMG_0023

V-formen på öronen sätts an med ytterspryglarna, glöm inte detta.

IMG_0027

Innerpanelerna = 87 gram, vilket är lätt.

PICT0308

Blue Phoenix just innan sättning.

PICT0006”Hmmm,  undrar om jag satte vingen rätt….
säger Rolf och begrundar sin modell.
 
PICT0307

Blue Phoenix på finalen.

PICT0283Frank på väg ut med sin modell.

PICT0263Blue Phoenix det den gör bäst, flyger.

PICT0140Motorfastsättning. Observera att motorspanten sitter snett
för att kompensera för snedanblåsning på fenan.

PICT0136Höjdroderstötstången sticker ut där bak ihop
med antennen. Lätt åtkomligt för justering.

PICT0310

 

 

Kategorier
Skärmflygeri

RIDDARNA AV SYDHANGET …

 

 

 

och vi andra, de små väpnarna.

 

 

 

I dag lördag hade Piggelin lovat perfekt vind på Sydhanget i Kåseberga
och därmed lockat mig att hänga med för en tur under trasan.
Vädret i Halmstad var inte förtroendeingivande med regn och ostlig vind.
Nåväl, bilens nos ställdes mot Helsingborg och efter lotsning av Piggis,
stod jag utanför hans hus och garage klockan 0900. In med min bil i
hans garage och över med mina prylar i hans bil.

Piggis lovade att vädret skulle vara bra, men det lät inte helt övertygande.
Vid framkomsten till Kåseberga blåste det syd med aningen dragning på väst,
vilket genast triggade igång fantasier hos mig om eventuell flygning vid Hammar.

Vi körde till ett nytt hemligt…….ställe och kollade flygmöjligheter.
Det verkade mycket bra ur alla synpunkter och vi beslöt utnyttja faciliteterna
vid senare tillfälle.

Vid sydhanget fanns redan ett gäng glada gosssar och en käck tös, Christina.
Vinden var stark, ca 8-10 m/sek , men de hårda grabbarna var redan i luften.
Vi som var lite fega stod och muttrade om, att det var ”för kallt” och andra
undanflykter, för vi ville ju inte det skulle avslöjas ,att vi inte ville flyga i
den för oss hårda vinden.

Hård vind är för hårda grabbar!

Fler piloter ankom, Storpotäten själv, Kalle , Claes, Trisse så tillsammans
med de andra Piggis, Vindis, Kristoffer, Hippiekristoffer, Jocke och en
hängflygare var vi ett gott gäng. Säkert har jag glömt en eller två.

De som inte flög gick ner på stranden och plockade bärnsten. Jocke var
proffs på detta. Däremot undertecknad, hitttade inte något, som kan kallas
bärnsten. Vinden ökade  de hårda grabbarna flög och de andra suktade.
När vinden började vrida över på sydost, packade vi ihop. Att landa i den
hårda vinden var ju inte helt enkelt. Men som det heter, ner kommer man alltid!

Sen återstod endast att kör 20 mil innan man anlände till hemmet, aningen genomblåst men ej urblåst.

 

 

 

 

IMG_0001Trångt vid parkeringen  IMG_0008Skyarna såg ju inte så förtroendeingivande ut….

IMG_0016

IMG_0013

 IMG_0019

IMG_0025

IMG_0028

IMG_0035

 IMG_0050

IMG_0060

IMG_0061


IMG_0063

 

IMG_0066

 

IMG_0069

IMG_0074

 

IMG_0079

 

IMG_0087

 

IMG_0088

 

IMG_0094

 

IMG_0056Hippiekristoffer 

 

 [nggallery id=44]

 

 

Kategorier
Naturbilder

EN AV MINA FAVORITPROMENADVÄGAR….

…är från parkeringen vid Tönnersa Strand ner till havet.

 

 

 

 

 

 

 

 

 

IMG_0090

 

 

Sen följer man stranden ca 3 km till Lagaoset, som ju alla vet
är Lagans mynning i havet. Där tar man till vänster och går vägen,
som löper parallellt med stranden fast inne i skogen ca 300 m.

När man går längs stranden, ser man alltid något, som är värt
att fotografera eller begrunda.
Inne i skogen möter du ju en helt annan miljö och biotop.
När du promenerar genom skogen, hör du havet och det låter
som ett passerande tåg som är oändligt långt.
Hela sträckan man strövar är ca 7 km.

Har ni aldrig varit där, det är värt ett besök.

Det blev några bilder oxå.

 

 

 

 

 

 

IMG_0093

Just där skogen tar vid ,växer ofta av vinden hårt tuktade björkar,
som aldrig får chansen att utvecklas, som vi är vana att se de i inlandet.
Här pinar blåsten träden och de anpassar sig så gott det går genom att inte bli för höga.

IMG_0077Av någon för mig outgrundlig anledning har någon slängt
8 säckar champinjoner vid parkeringen.
Verkar för mig totalt meningslöst.

IMG_0062

Strandskogen ser ut som en tavla av John Bauer.
(Googla John Bauer så förstår du)

IMG_0053Redan nu i november är knopparna stora  på Rhododendronbuskarna.
Vad en sådan buske gör här mitt ute i ingenting, vet jag inte,
men troligtvis en kvarleva av en för länge sen försvunnen sommarstuga.

IMG_0055En väg som tycks dragen med linjal.. Det är som en paradox i linearitet
bland allt det skenbart slumpmässiga i växtligheten.

IMG_0027En ensam kiteåkare vid Lagaoset. Fast det blåste för lite sa han. Jaha, hålla till i Kattegatt nu….Brrrrr

IMG_0022Ett ilandflutet träd med krona och allt. Undrar var det kommer ifrån
och hur har det kunnat komma så långt upp?
Trädet dekorerat med gamla joggingskor i grenarna.

IMG_0021En snäckas skal som balanserar på toppen av sitt vindskapade sandtorn.

IMG_0018

En ilandfluten stock med 4 stora spikar eller naglar islagna, så de bildar ett kryss.
Min fundering genast var ju: Varför och till vad?
Fast efter lite fundering undrar jag om det inte är en naturlig del av trädet?

IMG_0010

En vilsekommen ? fältpiplärka trippade jämte mig en lång sträcka
på sina ängsliga ben, tittande på mig precis som om den ville fråga :
Var är mina fältpiplärkekompisar och vartåt ligger söder?
Jag har inget tele på kamerna, därför blev hon lite liten.

IMG_0001

Havet eroderar kanten vid dynerna vid hård vind och lågt lufttryck.

 

 

 

 

 

 

 

Kategorier
Naturbilder Skärmflygeri Väder och vind

VAD STYR VÅRT VÄDER DEL 4

 

I detta avsnittet ska jag presentera begreppen

turbulens,  bergvindar, dalvindar,

anabatiska och katabatiska vindar.

 

 

Turbulens är enkelt uttryckt virvlar i en luftmassa. Turbulensen kan
vara stationär eller rörlig. Vidare kan turbulensen vara  likformad och
den kan vara helt slumpmässig.

Stationär turbulens, alltså turbulens man med säkerhet vet finns,
om vissa betingelser är uppfyllda är till exempel bakom ett större hinder.

 Flyger du som vi gör nära havet och vi med stor sannolikhet har
västliga och sydvästliga vindar, då kan du räkna med att du har
turbulens bakom björkdungen på andra sidan järnvägen.

Denna turbulens fortsätter sen i mindre virvlar på vår sida av järnvägen.
Samma stationära turbulens har du vid ett hang till exempel vid
Hovs Hallar eller vid dynkanten på Tönnersa Badstrand.

Där bildas en kantrotor som roterar medsols. Flyger du bakom kanten,
är det stor risk,  du fastnar i rotorn och åker i backen.

Vid Hovs Hallar är kant- eller topprotorn väldigt stark, vilket man
märker, om man flyger igenom den.

Det hörs ofta ett dunsaktigt ljud och modellen kastas iväg ett par
meter mycket okontrollerat.

Har vi en stationär rotor orsakar den i sin tur mindre rotorer efter hindret,
så länge som energin i turbulensen räcker till. Det är alltså inte så,
att det finns en rotor punkt slut och sen en fin laminär vind.

Efter exempelvis topprotorn uppstår mindre rotorer och turbulens
i ett vad gäller styrkan och storleken logaritmiskt mönster.

Hur vet jag, det att det är så?  Jo genom 37 års hangflygning
har det givit erfarenhet, så jag kan påstå det!

Ni känner ju säkert till historien om fjärilen i Amazonas, som genom
sina vingslag förändrade vädret på norra halvklotet.

Det är samma sak med turbulensen. Allt är beroende av allt
inom meteorologin.

 Turbulens orsakar turbulens. Till skillnad mot den relativt
stationära turbulensen vid en plats med samma vindstyrka
och stationära hinder är den , som jag kallar dynamiska turbulensen,
ett resultat av småturbulenser, orsakade av vindskift, småhinder
och temperaturskillnader.

Slutkläm:

Turbulens vid ett hinder vid en kust med jämna laminära frontala
vindar kan man förutsätta finns. Den har i stort sett samma
karaktär alltid om betingelserna är likformiga.

Dynamisk turbulens uppträder mera slumpmässigt och orsakas
av flera oberoende faktorer och är svår att förutsäga utbredning
och styrka på.

När vinden blåser från Kattegatt in mot ett hinder exempelvis
Hovs Hallar är vinden laminär. Det vill säga den är jämn,
parallell  utan virvlar.

Laminat=flera lager parallellt.

 Det är den absolut bästa vinden för flygaktivitet på alla sätt, nästan.

Vinden på vårt fält är, om den kommer från havet, laminär
om man kommer upp en bit. Närmast marken är den turbulent
just i gränsskiktet, men upp x antal meter blir den laminär.
Det märker ni, när ni startar och det blåser.

Första 25 metrarna upp hoppar och galopperar planet,
men sen lugnar allt ner sig. Turbulensen möter du ju sen igen
, då du ska landa.

Jag är övertygad om, att turbulens bakom häcken mot
Trönnninge, turbulens bakom alarna vid vägen och turbulens
bakom järnvägen är orsak till flera haverier.

Långt fler haverier än med så kallad radiostörning.

Därför:

Om var och en av oss sågar ner två träd om året, vore
turbulensproblemet borta på 4 år……..

Här kommer lite princip skisser på olika turbulenser
och hur de uppstår.

För ingen ska undra, bilderna hittade jag på nätet.

 

bild (5)

Här är ett mjukt hinder med anblåsande laminär (parallell) luft.
Luften förbliver laminär även efter passage av toppen om det
inte finns en dal bakom toppen. Detta är ju det idealiska hangflygningscenariot.

 

bild (6)

Här är ett annat exempel. Sluttningen är lite brantare med en knick
just i kanten. En liten topprotor bildas.

Man kan jämför detta exempel med en vinge, som man flyger
nästan överstegrad, alltså med för mycket anfallsvinkel.
Där uppstår också virvlar på ovansidan och lyftkraften kommer
att försvinna om anfallsvinkel ökas ännu mer. Luften kan inte
strömma laminärt längre då.

 

 

bild (7)

Detta är ett exempel, som kunde vara taget från Hovs Hallar.
En brant vägg som skapar förutsättning för en frontrotor.

 Den uppstår då luften har svårt att ”hitta upp” för kanten.
Det bildas en rotor och framför den strömmar luften uppåt
mot kanten på ett mera laminärt sätt. Denna uppströmmande
luft underhåller och tillför energi till frontrotorn.

Jag flög in i en sådan med skärmen på Hovs Hallar och det
medförde ett omedelbart kraftigt inslag i min skärm.
Det vill säga att framkanten veks in och skärmen slutade flyga.

Jag åkte mot moder jord, men tack vare skärmens goda egenskaper,
slog den ut efter 30-40 meter så jag kunde landa säkert. Puhhh!

bild (8)

Är läsidan på ett hinder mjuk och fin blir även läluften laminär.
Det är ju enkelt att förstå.

bild (9)

Men har man en knick i lä eller ett tillräckligt stort hinder
uppstår en lärotor. Denna rotor kan vara mycket kraftig.
På Hovs Hallar är den så kraftig, när det blåser 5 m/sek
och uppåt, att det kräver sin man att landa en högvärdig
modell utan skador.Kommer du in i rotorn, vilket du gör,
när du ska landa, då gäller det att använda alla roder på rätt sätt.

 

 

 

bild (11)

När termikblåsor släpper, uppstår som ni ser turbulens.
Varm och kall luft slåss och turbulens uppstår
Det märker man, när man segelflyger, att innan man
kommit in i blåsan är det ”kyttigt”. Inget stort problem
men det finns där.

Nu kommer det lite om hur vindarna blåser in och ur
en dal och upp och nerför bergssidor.

 

bild (17)

På dagen skiner solen på bergssidorna och marken.
Bergssidorna står vinklade, ena sidan, mot solen och
kan ta upp mer energi. Luften värms upp ovanför
bergssidan och stiger. Denna luft ska ersättas och
det sker genom att svalare luft utanför dalen sugs in.
Det fungerar som en pump likt sjöbrisen.

IMG_0033

På natten strömmar luften över kanten och glider nerför berget.
Och strömmar sen ut ur dalen

IMG_0034

Så här strömmar luften på dagen. Uppför bergssidorna.
Ett exempel på detta fenomen nära oss är Sinarpsdalen
nere vid Båstad. Ni vet säkert var den ligger. In till vänster
när man kommit in i Båstad går den riktning Grevie.
Jag har flugit där hundratals timmar och varit förundrad
över det fina lyftet. Det är som en fläkt, som hela tiden
producerar stigande luft.

IMG_0035

På natten när utstrålningen är stark svalnar luften
och rinner nerför bergssidorna. Denna nedåtströmning
kan i alpområdet vara mycket stark.